The Linux Command Line & Shell Scripting Bible 2™ Edition

Chapter 1

Starting with Linux Shells

In this Chapter

* What is Linux?

» Parts of the Linux kernel

» Exploring the Linux desktop

* Visiting Linux distributions
Before you can dive into working with the Linux command line and shells, it's a good
idea to first understand what Linux is, where it came from, and how it works. This

chapter walks you through what Linux is, and explains where the shell and command
line fit in the overall Linux picture.

What Is Linux?

If you've never worked with Linux before, you may be confused as to why there are so
many different versions of it available. I'm sure that you have heard various terms such
as distribution, LiveCD, and GNU when looking at Linux packages and been confused.
Wading through the world of Linux for the first time can be a tricky experience. This
chapter takes some of the mystery out of the Linux system before you start working on
commands and scripts.

For starters, there are four main parts that make up a Linux system:
» The Linux kernel
» The GNU utilities
» A graphical desktop environment

* Application software

Each of these four parts has a specific job in the Linux system. Each of the parts by
itself isn't very useful.Figure 1.1 shows a basic diagram of how the parts fit together to
create the overall Linux system.

Figure 1.1 The Linux system

19

The Linux Command Line & Shell Scripting Bible 2™ Edition

Application Software

; : . v

A
; v
Windows
Management
Software GNU
System
Utilities

Linux Kernel

! { { !

Computer Hardware

This section describes these four main parts in detail, and gives you an overview of
how they work together to create a complete Linux system.

Looking into the Linux Kernel

The core of the Linux system is the kernel. The kernel controls all of the hardware and
software on the computer system, allocating hardware when necessary, and executing
software when required.

If you've been following the Linux world at all, no doubt you've heard the name Linus
Torvalds. Linus is the person responsible for creating the first Linux kernel software while
he was a student at the University of Helsinki. He intended it to be a copy of the Unix
system, at the time a popular operating system used at many universities.

After developing the Linux kernel, Linus released it to the Internet community and
solicited suggestions for improving it. This simple process started a revolution in the
world of computer operating systems. Soon Linus was receiving suggestions from
students as well as professional programmers from around the world.

Allowing anyone to change programming code in the kernel would result in complete
chaos. To simplify things, Linus acted as a central point for all improvement suggestions.
It was ultimately Linus's decision whether or not to incorporate suggested code in the
kernel. This same concept is still in place with the Linux kernel code, except that instead
of just Linus controlling the kernel code, a team of developers has taken on the task.

20

The Linux Command Line & Shell Scripting Bible 2™ Edition

The kernel is primarily responsible for four main functions:
* System memory management
» Software program management
* Hardware management
* Filesystem management
The following sections explore each of these functions in more detail.

System Memory Management

One of the primary functions of the operating system kernel is memory management.
Not only does the kernel manage the physical memory available on the server, but it
can also create and manage virtual memory, or memory that does not actually exist.

It does this by using space on the hard disk, called the swap space. The kernel swaps
the contents of virtual memory locations back and forth from the swap space to the
actual physical memory. This allows the system to think there is more memory available
than what physically exists (shown in Figure 1.2).

Figure 1.2 The Linux system memory map
Virtual Memory

Physical Memory

Swap Space

2 e i
e R

The Kernel

e ET Sy
S e

The memory locations are grouped into blocks called pages. The kernel locates each
page of memory either in the physical memory or the swap space. The kernel then
maintains a table of the memory pages that indicates which pages are in physical
memory and which pages are swapped out to disk.

21

The Linux Command Line & Shell Scripting Bible 2™ Edition

The kernel keeps track of which memory pages are in use and automatically copies
memory pages that have not been accessed for a period of time to the swap space area
(called swapping out), even if there's other memory available. When a program wants to
access a memory page that has been swapped out, the kernel must make room for it in
physical memory by swapping out a different memory page, and swap in the required
page from the swap space. Obviously, this process takes time, and can slow down a
running process. The process of swapping out memory pages for running applications
continues for as long as the Linux system is running.

You can see the current status of the virtual memory on your Linux system by viewing
the special /proc/meminfofile. Here's an example of a sample /proc/meminfo entry:
rich@rich-desktop:~$ cat

MemTotal:
MemFree:
Buffers:
Cached:
SwapCached:
Active:
Inactive:
Active(anon):
Inactive(anon):
Active(file):
Inactive(file):
Unevictable:
Mlocked:
HighTotal:
HighFree:
LowTotal:
LowFree:
SwapTotal:
SwapFree:
Dirty:
Writeback:
AnonPages:
Mapped:
Shmem:

Slab:
SReclaimable:
SUnreclaim:
KernelStack:
PageTables:
NFS Unstable:
Bounce:
WritebackTmp:
CommitLimit:
Committed AS:

22

1026084
666356
49900
152272
0
171468
154196
131056
32
40412
154164
12

12
139208
252
886876
666104
2781176
2781176
588

0
123500
52232
7600
17676
9788
7888
2656
5072

0

0

0
3294216
1234480

/proc/meminfo
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB

The Linux Command Line & Shell Scripting Bible 2™ Edition

VmallocTotal: 122880 kB
VmallocUsed: 7520 kB
VmallocChunk: 110672 kB
HardwareCorrupted: 0 kB
HugePages Total: 0
HugePages Free: 0
HugePages Rsvd: 0
HugePages Surp: 0
Hugepagesize: 4096 kB
DirectMap4k: 12280 kB
DirectMap4M: 897024 kB

rich@rich-desktop:~$

The MemTotal: line shows that this Linux server has 1GB of physical memory. It also
shows that about 660MB is not currently being used (MemFree). The output also shows
that there is about 2.5GB of swap space memory available on this system (SwapTotal).

By default, each process running on the Linux system has its own private memory
pages. One process cannot access memory pages being used by another process. The
kernel maintains its own memory areas. For security purposes, no processes can access
memory used by the kernel processes.

To facilitate data sharing, you can create shared memory pages. Multiple processes
can read and write to and from a common shared memory area. The kernel maintains
and administers the shared memory areas and allows individual processes access to the
shared area.

The special ipcs command allows you to view the current shared memory pages on
the system. Here's the output from a sample ipcs command:

ipcs -m

------ Shared Memory Segments --------

key shmid owner perms bytes nattch status
0x00000000 0 rich 600 52228 6 dest
0x395ec51c 1 oracle 640 5787648 6

#

Each shared memory segment has an owner that created the segment. Each segment
also has a standard Linux permissions setting that sets the availability of the segment
for other users. The key value is used to allow other users to gain access to the shared
memory segment.

Software Program Management

The Linux operating system calls a running program a process. A process can run in the
foreground, displaying output on a display, or it can run in background, behind the

23

The Linux Command Line & Shell Scripting Bible 2™ Edition

scenes. The kernel controls how the Linux system manages all the processes running on
the system.

The kernel creates the first process, called the init process, to start all other processes
on the system. When the kernel starts, it loads the init process into virtual memory. As
the kernel starts each additional process, it gives it a unique area in virtual memory to
store the data and code that the process uses.

Some Linux implementations contain a table of processes to start automatically on
bootup. On Linux systems, this table is wusually located in the special
file /etc/inittabs.

Other systems (such as the popular Ubuntu Linux distribution) utilize
the /etc/init.d folder, which contains scripts for starting and stopping individual
applications at boot time. The scripts are started via entries under
the /etc/rcX.d folders, where X is a run level.

The Linux operating system uses an init system that utilizes run levels. A run level can
be used to direct the init process to run only certain types of processes, as defined in
the /etc/inittabs file or the /etc/rcX. dfolders. There are five init run levels in the
Linux operating system.

At run level 1, only the basic system processes are started, along with one console
terminal process. This is called single user mode. Single user mode is most often used
for emergency filesystem maintenance when something is broken. Obviously, in this
mode only one person (usually the administrator) can log in to the system to manipulate
data.

The standard init run level is 3. At this run level, most application software such as
network support software is started. Another popular run level in Linux is run level 5.
This is the run level where the system starts the graphical X Window software, and
allows you to log in using a graphical desktop window.

The Linux system can control the overall system functionality by controlling the init
run level. By changing the run level from 3 to 5, the system can change from a console-
based system to an advanced, graphical X Window system.

In Chapter 4, you'll see how to use the ps command to view the processes currently
running on the Linux system. Here's an example of what you'll see wusing
the ps command:

$ ps ax
PID TTY STAT TIME COMMAND
17 S 0:03 init
27 SwW 0:00 [kflushd]
37 SW 0:00 [kupdate]
47 SW 0:00 [kpiod]
57 SW 0:00 [kswapd]
243 7 SW 0:00 [portmap]
295 7 S 0:00 syslogd

24

305
320
335
350
365
403
418
423
424
425
426
427
428
429
430
436
437
438
470
485
495
533
538
539
540
541
542
543
544
549
559
585
594

The Linux Command Line & Shell Scripting Bible 2™ Edition

ttyl
tty2
tty3
tty4d
tty5
tty6

nwu un unu un

wn

SW
SW
SW
SW
SW
SW
SW
SW
SW
SW

SW

SW
SW
SW
SW
SW
SW
SW
SW
SW

0:00
:00
100
100
:00
:00
:00
100
:00
100
:00
:00
:00
:00
100
100
:00
:00
102
:00
100
100
:00
:00
:00
:00
:00
:00
:00
:00
102
106
100

© © ©O ©O © O 0O o o o o<

klogd
/usr/sbin/atd
crond
inetd
[lpd]

gpm -t ms
httpd
httpd
[httpd]
[httpd]
[httpd]
[httpd]
[httpd]
[httpd]
[httpd]
[httpd]
[httpd]
[httpd]
xfs -port -1
[smbd]
nmbd -D
[postmaster]
[mingetty]
[mingetty]
[mingetty]
[mingetty]
[mingetty]
[mingetty]
[prefdm]
[prefdm]

[kwm]
kikbd

kwmsound

25

The Linux Command Line & Shell Scripting Bible 2™ Edition

595 7 S 0:03 kpanel

596 ? S 0:02 kfm

597 ? S 0:00 krootwm

598 7 S 0:01 kbgndwm

611 ? S 0:00 kcmlaptop -daemon

666 ? S 0:00 /usr/libexec/postfix/master
668 ? S 0:00 gmgr -1 -t fifo -u

787 ? S 0:00 pickup -1 -t fifo

790 ? S 0:00 telnetd: 192.168.1.2 [vt100]
791 pts/0 S 0:00 login -- rich

792 pts/0 S 0:00 -bash

805 pts/0 R 0:00 ps ax

$

The first column in the output shows the process ID (or PID) of the process. Notice
that the first process is our friend the init process, and assigned PID 1 by the Linux
system. All other processes that start after the init process are assigned PIDs in
numerical order. No two processes can have the same PID (although old PID numbers
can be reused by the system after the original process terminates).

The third column shows the current status of the process (S for sleeping, SW for
sleeping and waiting, and R for running). The process name is shown in the last column.
Processes that are in brackets are processes that have been swapped out of memory to
the disk swap space due to inactivity. You can see that some of the processes have been
swapped out, but most of the running processes have not.

Hardware Management

Still another responsibility for the kernel is hardware management. Any device that the
Linux system must communicate with needs driver code inserted inside the kernel code.
The driver code allows the kernel to pass data back and forth to the device, acting as a
middle man between applications and the hardware. There are two methods used for
inserting device driver code in the Linux kernel:

 Drivers compiled in the kernel
» Driver modules added to the kernel

Previously, the only way to insert device driver code was to recompile the kernel. Each
time you added a new device to the system, you had to recompile the kernel code. This
process became even more inefficient as Linux kernels supported more hardware.
Fortunately, Linux developers devised a better method to insert driver code into the
running kernel.

Programmers developed the concept of kernel modules to allow you to insert driver
code into a running kernel without having to recompile the kernel. Also, a kernel module

26

The Linux Command Line & Shell Scripting Bible 2™ Edition

could be removed from the kernel when the device was finished being used. This greatly
simplified and expanded using hardware with Linux.

The Linux system identifies hardware devices as special files, called device files.
There are three different classifications of device files:

* Character
* Block
* Network

Character device files are for devices that can only handle data one character at a
time. Most types of modems and terminals are created as character files. Block files are
for devices that can handle data in large blocks at a time, such as disk drives.

The network file types are used for devices that use packets to send and receive data.
This includes network cards and a special loopback device that allows the Linux system
to communicate with itself using common network programming protocols.

Linux creates special files, called nodes, for each device on the system. All
communication with the device is performed through the device node. Each node has a
unique number pair that identifies it to the Linux kernel. The number pair includes a
major and a minor device number. Similar devices are grouped into the same major
device number. The minor device number is used to identify a specific device within the
major device group. The following is an example of a few device files on a Linux server:

rich@rich-desktop: ~$ cd /dev

rich@rich-desktop:/dev$ ls -al sda* ttyS*

brw-rw---- 1 root disk 8, 0 2010-09-18 17:25 sda

brw-rw---- 1 root disk 8, 1 2010-09-18 17:25 sdal
brw-rw---- 1 root disk 8, 2 2010-09-18 17:25 sda2

brw-rw---- 1 root disk 8, 5 2010-09-18 17:25 sda5
crw-rw---- 1 root dialout 4, 64 2010-09-18 17:25 ttyS0e
crw-rw---- 1 root dialout 4, 65 2010-09-18 17:25 ttySl
crw-rw---- 1 root dialout 4, 66 2010-09-18 17:25 ttyS2
crw-rw---- 1 root dialout 4, 67 2010-09-18 17:25 ttyS3

rich@rich-desktop:/dev$

Different Linux distributions handle devices using different device names. In this
distribution, the sda device is the first ATA hard drive, and the ttyS devices are the
standard IBM PC COM ports. The listing shows all of thesda devices that were created
on the sample Linux system. Not all are actually used, but they are created in case the
administrator needs them. Similarly, the listing shows all of the ttyS devices created.

The fifth column is the major device node number. Notice that all of the sda devices
have the same major device node, 8, while all of the ttyS devices use 4. The sixth
column is the minor device node number. Each device within a major number has its
own unique minor device node number.

The first column indicates the permissions for the device file. The first character of the
permissions indicates the type of file. Notice that the ATA hard drive files are all marked
as block (b) device, while the COM port device files are marked as character (c) devices.

Filesystem Management

27

The Linux Command Line & Shell Scripting Bible 2™ Edition

Unlike some other operating systems, the Linux kernel can support different types of
filesystems to read and write data to and from hard drives. Besides having over a dozen
filesystems of its own, Linux can read and write to and from filesystems used by other
operating systems, such as Microsoft Windows. The kernel must be compiled with
support for all types of filesystems that the system will use. Table 1.1 lists the standard
filesystems that a Linux system can use to read and write data.

Table 1.1 Linux Filesystems

‘Filesystem HDescription

‘ReiserFS HAdvanced Linux file system for better performance and disk recovery

|
‘ext HLinux Extended filesystem—the original Linux filesystem ‘
‘eth HSecond extended filesystem, provided advanced features over ext ‘
‘ext3 HThird extended filesystem, supports journaling ‘
‘ext4 HFourth extended filesystem, supports advanced journaling ‘
‘hpfs HOS/2 high-performance filesystem ‘
h’fs HIBM'S journaling file system ‘
i509660 1SO 9660 filesystem (CD-ROMs) |
‘minix HMIN IX filesystem ‘
‘msdos ‘ ‘Microsoft FAT16 ‘
‘ncp HNetware filesystem ‘
‘nfs HNetwork File System ‘
‘ntfs ‘ ‘Support for Microsoft NT filesystem ‘
broc HAccess to system information ‘
|
|
|
|
|
|

‘smb HSamba SMB filesystem for network access

‘sysv ‘ ‘Older Unix filesystem

ﬁlfs HBSD filesystem

‘umsdos HUnix-like filesystem that resides on top of msdos

‘vfat HWindows 95 filesystem (FAT32)

b(F S HHigh-performance 64-bit journaling filesystem ‘

Any hard drive that a Linux server accesses must be formatted using one of the
filesystem types listed in Table 1.1.

The Linux kernel interfaces with each filesystem using the Virtual File System (VFS).
This provides a standard interface for the kernel to communicate with any type of
filesystem. VFS caches information in memory as each filesystem is mounted and used.

The GNU Utilities

Besides having a kernel to control hardware devices, a computer operating system
needs utilities to perform standard functions, such as controlling files and programs.
While Linus created the Linux system kernel, he had no system utilities to run on it.
Fortunately for him, at the same time he was working, a group of people were working

28

The Linux Command Line & Shell Scripting Bible 2™ Edition

together on the Internet trying to develop a standard set of computer system utilities
that mimicked the popular Unix operating system.

The GNU organization (GNU stands for GNU's Not Unix) developed a complete set of
Unix utilities, but had no kernel system to run them on. These utilities were developed
under a software philosophy called open source software (OSS).

The concept of OSS allows programmers to develop software and then release it to
the world with no licensing fees attached. Anyone can use the software, modify it, or
incorporate it into his or her own system without having to pay a license fee. Uniting
Linus's Linux kernel with the GNU operating system utilities created a complete,
functional, free operating system.

While the bundling of the Linux kernel and GNU utilities is often just called Linux, you
will see some Linux purists on the Internet refer to it as the GNU/Linux system to give
credit to the GNU organization for its contributions to the cause.

The Core GNU Utilities

The GNU project was mainly designed for Unix system administrators to have a Unix-like
environment available. This focus resulted in the project porting many common Unix
system command line utilities. The core bundle of utilities supplied for Linux systems is
called the coreutils package.

The GNU coreutils package consists of three parts:
« Utilities for handling files
« Utilities for manipulating text
 Utilities for managing processes

Each of these three main groups of utilities contains several utility programs that are
invaluable to the Linux system administrator and programmer. This book covers each of
the utilities contained in the GNU coreutils package in detail.

The Shell

The GNU/Linux shell is a special interactive utility. It provides a way for users to start
programs, manage files on the filesystem, and manage processes running on the Linux
system. The core of the shell is the command prompt. The command prompt is the
interactive part of the shell. It allows you to enter text commands, and then it interprets
the commands and then executes them in the kernel.

The shell contains a set of internal commands that you use to control things such as
copying files, moving files, renaming files, displaying the programs currently running on
the system, and stopping programs running on the system. Besides the internal
commands, the shell also allows you to enter the name of a program at the command
prompt. The shell passes the program name off to the kernel to start it.

You can also group shell commands into files to execute as a program. Those files are
called shell scripts. Any command that you can execute from the command line can be
placed in a shell script and run as a group of commands. This provides great flexibility in
creating utilities for commonly run commands, or processes that require several
commands grouped together.

29

The Linux Command Line & Shell Scripting Bible 2™ Edition

There are quite a few Linux shells available to use on a Linux system. Different shells
have different characteristics, some being more useful for creating scripts and some
being more useful for managing processes. The default shell used in all Linux
distributions is the bash shell. The bash shell was developed by the GNU project as a
replacement for the standard Unix shell, called the Bourne shell (after its creator). The
bash shell name is a play on this wording, referred to as the “Bourne again shell.”

In addition to the bash shell, we will cover several other popular shells in this
book. Table 1.2 lists the different shells we will examine.

Table 1.2 Linux Shells

‘Shell HDescription ‘

‘ash HA simple, lightweight shell that runs in low-memory environments but has full compatibility with the bash shell ‘

A programming shell compatible with the Bourne shell but supporting advanced programming features like

komn o
associative arrays and floating-point arithmetic

‘tcsh HA shell that incorporates elements from the C programming language into shell scripts ‘

zsh

An advanced shell that incorporates features from bash, tcsh, and korn, providing advanced programming
features, shared history files, and themed prompts

Most Linux distributions include more than one shell, although usually they pick one of
them to be the default. If your Linux distribution includes multiple shells, feel free to
experiment with different shells and see which one fits your needs.

The Linux Desktop Environment

In the early days of Linux (the early 1990s) all that was available was a simple text
interface to the Linux operating system. This text interface allowed administrators to
start programs, control program operations, and move files around on the system.

With the popularity of Microsoft Windows, computer users expected more than the old
text interface to work with. This spurred more development in the OSS community, and
the Linux graphical desktops emerged.

Linux is famous for being able to do things in more than one way, and no place is this
more relevant than in graphical desktops. There are a plethora of graphical desktops
you can choose from in Linux. The following sections describe a few of the more popular
ones.

The X Windows System

There are two basic elements that control your video environment—the video card in
your PC and your monitor. To display fancy graphics on your computer, the Linux
software needs to know how to talk to both of them. The X Windows software is the core
element in presenting graphics.

The X Windows software is a low-level program that works directly with the video card
and monitor in the PC, and controls how Linux applications can present fancy windows
and graphics on your computer.

30

The Linux Command Line & Shell Scripting Bible 2™ Edition

Linux isn't the only operating system that uses X Windows; there are versions written
for many different operating systems. In the Linux world, there are only two software
packages that can implement it.

The XFree86 software package is the older of the two, and for a long time was the
only X Windows package available for Linux. As its name implies, it's a free open source
version of the X Windows software.

The newer of the two packages, X.org, has made great inroads in the Linux world and
is now the more popular of the two. It, too, provides an open source software
implementation of the X Windows system, but has support for more of the newer video
cards used today.

Both packages work the same way, controlling how Linux uses your video card to
display content on your monitor. To do that, they have to be configured for your specific
system. That is supposed to happen automatically when you install Linux.

When you first install a Linux distribution, it attempts to detect your video card and
monitor, and then creates an X Windows configuration file that contains the required
information. During installation you may notice a time when the installation program
scans your monitor for supported video modes. Sometimes this causes your monitor to
go blank for a few seconds. Because there are lots of different types of video cards and
monitors out there, this process can take a little while to complete.

The core X Windows software produces a graphical display environment, but nothing
else. While this is fine for running individual applications, it is not too useful for day-to-
day computer use. There is no desktop environment allowing users to manipulate files
or launch programs. To do that, you need a desktop environment on top of the X
Windows system software.

The KDE Desktop

The K Desktop Environment (KDE) was first released in 1996 as an open source project
to produce a graphical desktop similar to the Microsoft Windows environment. The KDE
desktop incorporates all of the features you are probably familiar with if you are a
Windows user. Figure 1.3 shows a sample KDE 4 desktop running in the openSuSE Linux
distribution.

Figure 1.3 The KDE 4 desktop on an openSuSE Linux system

31

The Linux Command Line & Shell Scripting Bible 2™ Edition

& (2 rich - Doisten

File Edt Miew Go Taols Sefings Help
¢ & $ G

b Frmnt W

Rich Blim frichy on limuz deos 1S LISE
P —
i
.

e Web Biawser

L 4 Personal Inhomvation Manags:

1 Fubdars § i (1153 KB

The KDE desktop allows you to place both application and file icons in a special area
on the desktop. If you single-click an application icon, the Linux system starts the
application. If you single-click on a file icon, the KDE desktop attempts to determine
what application to start to handle the file.

The bar at the bottom of the desktop is called the Panel. The Panel consists of four
parts:

e The K menu: Much like the Windows Start menu, the K menu contains links to
start installed applications.

* Program shortcuts: These are quick links to start applications directly from the
Panel.

* The taskbar: The taskbar shows icons for applications currently running on the
desktop.

» Applets: These are small applications that have an icon in the Panel that often
can change depending on information from the application.

All of the Panel features are similar to what you would find in Windows. In addition to
the desktop features, the KDE project has produced a wide assortment of applications
that run in the KDE environment. These applications are shown in Table 1.3. (You may
notice the trend of using a capital K in KDE application names.)

Table 1.3 KDE Applications

‘Application HDescription

‘amaroK HAudio file player

|
|
‘digiKarn ‘ ‘Digital camera software ‘
|

‘dolphin ‘ ‘File manager

32

The Linux Command Line & Shell Scripting Bible 2™ Edition

‘K3b HCD-burning software

‘Kaffeine HVideo player

|
|
E-mail client ‘
|
|

Kmail

‘Kofﬁce HOfﬁce applications suite
‘Konqueror HF ile and Web browser

‘Kontact HPersonal information manager ‘
‘Kopete HInstant messaging client ‘

This is only a partial list of applications produced by the KDE project. There are lots
more applications that are included with the KDE desktop.

The GNOME Desktop

The GNU Network Object Model Environment (GNOME) is another popular Linux desktop
environment. First released in 1999, GNOME has become the default desktop
environment for many Linux distributions (the most popular being Red Hat Linux).

While GNOME chose to depart from the standard Microsoft Windows look-and-feel, it
incorporates many features that most Windows users are comfortable with:

» A desktop area for icons
* Two panel areas
» Drag-and-drop capabilities
Figure 1.4 shows the standard GNOME desktop used in the Ubuntu Linux distribution.

8:49 PM o)) Q@rich &

H Q0% @ [enView v A

B wd .a

' File System Downloads Music

i Network
o 11 GB Filesystem

N) m
. Floppy Drive S ﬂ_’_‘ - 1 d
= Trash Pictures Public Templates test
7 Documents Gos
| Music el i - ot
) Pictures untitied folder Videos Examples outputl
@ videos erta

| Downloads
ptest.sh test.txt

14 items, Free space: 54.1 GB

TS @ rich- File Browser

33

The Linux Command Line & Shell Scripting Bible 2™ Edition

Not to be outdone by KDE, the GNOME developers have also produced a host of
graphical applications that integrate with the GNOME desktop. These are shown in Table
14.

As you can see, there are also quite a few applications available for the GNOME
desktop. Besides all of these applications, most Linux distributions that use the GNOME
desktop also incorporate the KDE libraries, allowing you to run KDE applications on your
GNOME desktop.

Table 1.4 GNOME Applications

‘Application ‘ ‘Description

‘epiphany ‘ ‘Web browser

‘evince ‘ ‘Document viewer

‘gcalc-tool ‘ ‘Calculator

‘gedit HGNOME text editor

‘gnome-panel HDesktop panel for launching applications

‘gnome-terminal HTerminal emulator

‘nautilus HGraphical file manager

‘nautilus—cd-burner HCD-burning tool

|
|
|
|
|
|
‘gnome-nettool HNetwork diagnostics tool ‘
|
|
|
|
|
|

‘sound juicer HAudio CD-ripping tool
‘tomboy ‘h\lote-taking software
‘totem ‘ ‘Multimedia player
Other Desktops

The downside to a graphical desktop environment is that they require a fair amount of
system resources to operate properly. In the early days of Linux, a hallmark and selling
feature of Linux was its ability to operate on older, less powerful PCs that the newer
Microsoft desktop products couldn't run on. However, with the popularity of KDE and
GNOME desktops, this has changed, as it takes just as much memory to run a KDE or
GNOME desktop as the latest Microsoft desktop environment.

If you have an older PC, don't be discouraged. The Linux developers have banded
together to take Linux back to its roots. They've created several low-memory-oriented
graphical desktop applications that provide basic features that run perfectly fine on
older PCs.

While these graphical desktops don't have a plethora of applications designed around
them, they still run many basic graphical applications that support features such as
word processing, spreadsheets, databases, drawing, and, of course, multimedia support.

Table 1.5 shows some of the smaller Linux graphical desktop environments that can be
used on lower-powered PCs and laptops.

Table 1.5 Other Linux Graphical Desktops
‘ ‘Desktop ‘ ‘Description ‘ ‘

34

The Linux Command Line & Shell Scripting Bible 2™ Edition

‘ﬂuxbox ‘% bare-bones desktop that doesn't include a Panel, only a pop-up menu to launch applications

‘xfce HA desktop that's similar to the KDE desktop, but with less graphics for low-memory environments ‘

‘JWM HJoe's Window Manager, a very lightweight desktop ideal for low-memory and low-disk space environments

Supports some advanced desktop features such as virtual desktops and Panels, but runs in low-memory

fvwm .
environments

‘fvwm95 HDerived from fvwm, but made to look like a Windows 95 desktop ‘

These graphical desktop environments are not as fancy as the KDE and GNOME
desktops, but they provide basic graphical functionality just fine. Figure 1.5 shows what
the fluxbox desktop used in the Puppy Linux antiX distribution looks like.

Figure 1.5 The JWM desktop as seen in the Puppy Linux distribution

o NNl B o vicome exe mouse pointer

information

file: help mount nstatl setup

R e l- OB+ Y. @ [E I 11 tems 29 hidden)

B S s i s n 8]

Choices Fle-Shanng ftpd icewm Mail my- my-

apphications documents

Startup Web-Server

puppy spot
reference

erl

s o O] i el LD —— | 03 1280

If you are using an older PC, try a Linux distribution that uses one of these desktops
and see what happens. You may be pleasantly surprised.

Linux Distributions

Now that you have seen the four main components required for a complete Linux
system, you may be wondering how you are going to get them all put together to make
a Linux system. Fortunately, there are people who have already done that for you.

A complete Linux system package is called a distribution. There are lots of different
Linux distributions available to meet just about any computing requirement you could
have. Most distributions are customized for a specific user group, such as business
users, multimedia enthusiasts, software developers, or average home users. Each
customized distribution includes the software packages required to support specialized

35

The Linux Command Line & Shell Scripting Bible 2™ Edition

functions, such as audio- and video-editing software for multimedia enthusiasts, or
compilers and integrated development environments (IDEs) for software developers.

The different Linux distributions are often divided into three categories:
 Full core Linux distributions
» Specialized distributions
» LiveCD test distributions

The following sections describe these different types of Linux distributions, and show
some examples of Linux distributions in each category.

Core Linux Distributions

A core Linux distribution contains a kernel, one or more graphical desktop environments,
and just about every Linux application that is available, precompiled for the kernel. It
provides one-stop shopping for a complete Linux installation. Table 1.6 shows some of
the more popular core Linux distributions.

Table 1.6 Core Linux Distributions

‘Distribution HDescription

‘Slackware HOne of the original Linux distribution sets, popular with Linux geeks

‘Red Hat HA commercial business distribution used mainly for Internet servers
‘Gentoo HA distribution designed for advanced Linux users, containing only Linux source code
‘Mandriva HDesigned mainly for home use (previously called Mandrake)

‘openSuSe HDifferent distributions for business and home use

|
|
|
‘Fedora HA spin-off from Red Hat but designed for home use ‘
|
|
|
|

‘Debian HPopular with Linux experts and commercial Linux products

In the early days of Linux, a distribution was released as a set of floppy disks. You had
to download groups of files and then copy them onto disks. It would usually take 20 or
more disks to make an entire distribution! Needless to say, this was a painful
experience.

Nowadays, with home computers commonly having CD and DVD players built in,
Linux distributions are released as either a CD set or a single DVD. This makes installing
Linux much easier.

However, beginners still often run into problems when they install one of the core
Linux distributions. To cover just about any situation in which someone might want to
use Linux, a single distribution has to include lots of application software. They include
everything from high-end Internet database servers to common games. Because of the
quantity of applications available for Linux, a complete distribution often takes four or
more CDs.

While having lots of options available in a distribution is great for Linux geeks, it can
become a nightmare for beginning Linux users. Most distributions ask a series of
questions during the installation process to determine which applications to load by
default, what hardware is connected to the PC, and how to configure the hardware.
Beginners often find these questions confusing. As a result, they often either load way

36

The Linux Command Line & Shell Scripting Bible 2™ Edition

too many programs on their computer or don't load enough and later discover that their
computer won't do what they want it to.

Fortunately for beginners, there's a much simpler way to install Linux.

Specialized Linux Distributions

A new subgroup of Linux distributions has started to appear. These are typically based
on one of the main distributions but contain only a subset of applications that would
make sense for a specific area of use.

In addition to providing specialized software (such as only office products for business
users), customized Linux distributions also attempt to help beginning Linux users by
autodetecting and autoconfiguring common hardware devices. This makes installing
Linux a much more enjoyable process.

Table 1.7 shows some of the specialized Linux distributions available and what they
specialize in.

Table 1.7 Specialized Linux Distributions

‘Distribution HDescription

‘Xandros HA commercial Linux package configured for beginners

‘Ubuntu HA free distribution for school and home use

‘PCLinuxOS HA free distribution for home and office use

|
|
‘SimplyMEPIS HA free distribution for home use ‘
|
|
|

‘Mint ‘ ‘A free distribution for home entertainment use

‘dyne:bolic HA free distribution designed for audio and MIDI applications ‘

‘Puppy Linux HA free small distribution that runs well on older PCs ‘

That's just a small sampling of specialized Linux distributions. There are literally
hundreds of specialized Linux distributions, and more are popping up all the time on the
Internet. No matter what your specialty, you'll probably find a Linux distribution made
for you.

Many of the specialized Linux distributions are based on the Debian Linux distribution.
They use the same installation files as Debian but package only a small fraction of a full-
blown Debian system.

The Linux LiveCD

A relatively new phenomenon in the Linux world is the bootable Linux CD distribution.
This lets you see what a Linux system is like without actually installing it. Most modern
PCs can boot from a CD instead of the standard hard drive. To take advantage of this,
some Linux distributions create a bootable CD that contains a sample Linux system
(called a Linux LiveCD). Because of the limitations of the single CD size, the sample
can't contain a complete Linux system, but you'd be surprised at all the software they
can cram in there. The result is that you can boot your PC from the CD and run a Linux
distribution without having to install anything on your hard drive!

37

The Linux Command Line & Shell Scripting Bible 2™ Edition

This is an excellent way to test various Linux distributions without having to mess with
your PC. Just pop in a CD and boot! All of the Linux software will run directly off the CD.
There are lots of Linux LiveCDs that you can download from the Internet and burn onto a
CD to test drive.

Table 1.8 shows some popular Linux LiveCDs that are available.
Table 1.8 Linux LiveCD Distributions

‘Distribution HDescription

‘SimplyMEPIS HDesigned for beginning home Linux users

|
‘Knoppix HA German Linux, the first Linux LiveCD developed ‘
|
|

‘PCLinuxOS HFull-blown Linux distribution on a LiveCD

‘Ubuntu HA worldwide Linux project, designed for many languages ‘

‘Slax HA live Linux CD based on Slackware Linux ‘

‘Puppy Linux HA full-featured Linux designed for older PCs ‘

You may notice a familiarity in this table. Many specialized Linux distributions also
have a Linux LiveCD version. Some Linux LiveCD distributions, such as Ubuntu, allow
you to install the Linux distribution directly from the LiveCD. This enables you to boot
with the CD, test drive the Linux distribution, and then if you like it, install it on your
hard drive. This feature is extremely handy and user-friendly.

As with all good things, Linux LiveCDs have a few drawbacks. Because you access
everything from the CD, applications run more slowly, especially if you're using older,
slower computers and CD drives. Also, because you can't write to the CD, any changes
you make to the Linux system will be gone the next time you reboot.

But there are advances being made in the Linux LiveCD world that help to solve some
of these problems. These advances include the ability to:

» Copy Linux system files from the CD to memory
» Copy system files to a file on the hard drive

» Store system settings on a USB memory stick

» Store user settings on a USB memory stick

Some Linux LiveCDs, such as Puppy Linux, are designed with a minimum number of
Linux system files. The LiveCD boot scripts copies them directly into memory when the
CD boots. This allows you to remove the CD from the computer as soon as Linux boots.
Not only does this make your applications run much faster (because applications run
faster from memory), but it also gives you a free CD tray to use for ripping audio CDs or
playing video DVDs from the software included in Puppy Linux.

Other Linux LiveCDs use an alternative method that allows you to remove the CD from
the tray after booting. It involves copying the core Linux files onto the Windows hard
drive as a single file. After the CD boots, it looks for that file and reads the system files
from it. The dyne:bolic Linux LiveCD uses this technique, which is called docking. Of
course, you must copy the system file to your hard drive before you can boot from the
CD.

A very popular technique for storing data from a live Linux CD session is to use a
common USB memory stick (also called a flash drive or a thumb drive). Just about every

38

The Linux Command Line & Shell Scripting Bible 2™ Edition

Linux LiveCD can recognize a plugged-in USB memory stick (even if the stick is
formatted for Windows) and read and write files to and from it. This allows you to boot a
Linux LiveCD, use the Linux applications to create files, store those files on your
memory stick, and then access them from your Windows applications later (or from a
different computer). How cool is that?

Summary

This chapter discussed the Linux system, and the basics of how it works. The Linux
kernel is the core of the system, controlling how memory, programs, and hardware all
interact with one another. The GNU utilities are also an important piece in the Linux
system. The Linux shell, which is the main focus of this book, is part of the GNU core
utilities. The chapter also discussed the final piece of a Linux system, the Linux desktop
environment. Things have changed over the years, and Linux now supports several
graphical desktop environments.

The chapter also discussed the various Linux distributions. A Linux distribution
bundles the various parts of a Linux system into a simple package that you can easily
install on your PC. The Linux distribution world consists of full-blown Linux distributions
that include just about every application imaginable, as well as specialized Linux
distributions that only include applications focused on a special function. The Linux
LiveCD craze has created another group of Linux distributions that allow you to easily
test drive Linux without even having to install it on your hard drive.

In the next chapter, you look at what you need to start your command line and shell
scripting experience. You'll see what you need to do to get to the Linux shell utility from
your fancy graphical desktop environment. These days that's not always an easy thing.

Chapter 2

Getting to the Shell

In This Chapter

* Terminal emulation
* The terminfo database
e The Linux console

39

The Linux Command Line & Shell Scripting Bible 2™ Edition

Chapter 3

Basic bash Shell Commands

In This Chapter

» Starting the shell

* The shell prompt

* The bash manual

» Filesystem navigation
 File and directory listing
+ File handling

» Directory handling

» Viewing file contents

The default shell used in all Linux distributions is the GNU bash shell. This chapter
describes the basic features available in the bash shell, and walks you through how to
work with Linux files and directories using the basic commands provided by the bash
shell. If you're already comfortable working with files and directories in the Linux
environment, feel free to skip this chapter and continue with Chapter 4 to see more
advanced commands.

Starting the Shell

72

The Linux Command Line & Shell Scripting Bible 2™ Edition

The GNU bash shell is a program that provides interactive access to the Linux system. It
runs as a regular program, normally started whenever a user logs in to a terminal. The
shell that the system starts depends on your user ID configuration.

The /etc/passwd file contains a list of all the system user accounts, along with some
basic configuration information about each user. Here's a sample entry from
a /etc/passwd file:

rich:x:501:501:Rich Blum:/home/rich:/bin/bash

Each entry has seven data fields, with each field separated by a colon. The system
uses the data in these fields to assign specific features for the user. These fields are:

* The username

» The user's password (or a placeholder if the password is stored in another file)
» The user's system user ID number

* The user's system group ID number

* The user's full name

» The user's default home directory

* The user's default shell program

Most of these entries will be discussed in more detail in Chapter 6. For now, just pay
attention to the shell program specified.

Most Linux systems use the default bash shell program when starting a command line
interface (CLI) environment for the user. The bash program also uses command line
parameters to modify the type of shell you can start. Table 3.1 lists the command line
parameters available in bash that define what type of shell to use.

Table 3.1 The bash Command Line Parameters

‘Parameter ‘ ‘Description ‘

-c string HRead commands from string and process them. ‘

-r HStart a restricted shell, limiting the user to the default directory. ‘
-1 HStart an interactive shell, allowing input from the user. ‘
-S HRead commands from the standard input. ‘

By default, when the bash shell starts, it automatically processes commands in
the .bashrc file in the user's home directory. Many Linux distributions use this file to
also load a common file that contains commands and settings for everyone on the
system. This common file is normally located in the file /etc/bashrc. This file often
sets environment variables (see Chapter 5) used in various applications.

The Shell Prompt

Once you start a terminal emulation package or log in from the Linux console, you get
access to the shell CLIprompt. The prompt is your gateway to the shell. This is the place
where you enter shell commands.

73

The Linux Command Line & Shell Scripting Bible 2™ Edition

The default prompt symbol for the bash shell is the dollar sign ($). This symbol
indicates that the shell is waiting for you to enter text. However, you can change the
format of the prompt used by your shell. The different Linux distributions use different
formats for the prompt. On this Ubuntu Linux system, the bash shell prompt looks like
this:

rich@user-desktop:~$

On this Fedora Linux system, it looks like this:

[rich@testbox~]$

You can configure the prompt to provide basic information about your environment.
The first example shows three pieces of information in the prompt:

* The username that started the shell
» The current virtual console number
» The current directory (the tilde sign is shorthand for the home directory)

The second example provides similar information, except that it uses the hostname
instead of the virtual console number. There are two environment variables that control
the format of the command line prompt:

» PS1: Controls the format of the default command line prompt
» PS2: Controls the format of the second-tier command line prompt
The shell uses the default PS1 prompt for initial data entry into the shell. If you enter
a command that requires additional information, the shell displays the second-tier
prompt specified by the PS2 environment variable.
To display the current settings for your prompts, use the echo command:
rich@ user-desktop:~$ echo $PS1
${debian chroot:+($debian chroot)}\u@\h:\w\$
rich@ user-desktop:~$ echo $PS2
>
rich@ user-desktop:~$
The format of the prompt environment variables can look pretty odd. The shell uses

special characters to signify elements within the command line prompt. Table 3.2 shows
the special characters that you can use in the prompt string.

Table 3.2 Bash Shell Prompt Characters

‘Character HDescription ‘
\\a HBell character ‘
‘\d HDate in the format “Day Month Date” ‘
‘\e HASCII escape character ‘
‘\ h ‘ ‘Local hostname ‘
‘\H HFully qualified domain hostname ‘
‘\j HNumber of jobs currently managed by the shell ‘
‘\1 HBasename of the shell's terminal device name ‘
\\n HASCII newline character ‘
‘\ r HASCII carriage return ‘

74

The Linux Command Line & Shell Scripting Bible 2™ Edition

‘\ S HName of the shell ‘
‘\‘t HCurrent time in 24-hour HH:MM:SS format ‘
‘\T HCurrent time in 12-hour HH:MM:SS format ‘
‘\@ HCurrent time in 12-hour am/pm format ‘
‘\u HUsemame of the current user ‘
‘\V HVersion of the bash shell ‘
‘\V HRelease level of the bash shell ‘
‘\W HCurrent working directory ‘
‘\W HBasename of the current working directory ‘
‘\ ! HBash shell history number of this command ‘
‘\# HCommand number of this command ‘
‘\$ HA dollar sign if a normal user, or a pound sign if the root user ‘
‘\ nnn ‘ ‘Character corresponding to the octal value nnn ‘
‘\ \ ‘ ‘B ackslash ‘
‘\ [HBegins a control code sequence ‘
‘\] HEnds a control code sequence ‘

Notice that all of the special prompt characters begin with a backslash (\). This is what
delineates a prompt character from normal text in the prompt. In the earlier example,
the prompt contained both prompt characters and a normal character (the “at” sign,
and the square brackets). You can create any combination of prompt characters in your
prompt. To create a new prompt, just assign a new string to the PS1 variable:

[rich@testbox~]$ PS1=“[\t][\ul\$ ”

[14:40:32]1[rich]$

This new shell prompt now shows the current time, along with the username. The
new PS1 definition only lasts for the duration of the shell session. When you start a new
shell, the default shell prompt definition is reloaded. In Chapter 5 you'll see how you can
change the default shell prompt for all shell sessions.

The bash Manual

Most Linux distributions include an online manual for looking up information on shell
commands, as well as lots of other GNU utilities included in the distribution. It is a good
idea to become familiar with the manual, as it's invaluable for working with utilities,
especially when you're trying to figure out various command line parameters.

The man command provides access to the manual pages stored on the Linux system.
Entering the man command followed by a specific utility name provides the manual
entry for that utility. Figure 3.1 shows an example of looking up the manual pages for the
date command.

Figure 3.1 Displaying the manual pages for the Linux date command

75

The Linux Command Line & Shell Scripting Bible 2™ Edition

File Edit View Search Terminal Help

User Commands DATE(1)

date - print or set the system date and Time
SYNOPSIS

date [QOPTION]...

date [-u|--utc|--i sal] [MMODhhmm([CCIYY][.55]]

DESCRIPTION
Display the current time in the given FORMAT, or set the system date.

-d, --date=5STRING
display time described by STRING, not now'

--file=DATEFILE
like --date once for each line of DATEFILE

--reference=FILE
display the last modification time of FILE

-R, --rfc-2822
output date and time in RFC 2 f t. Ex le: , B7 Aug 2806 12:34:56 -0600

- =rfc-3339=TIMESPEC

and time in RFC 33 TIMESPEC= date', s 5, D ns' for
B L 2 and time components are separated

-5, =-=58t=STRING)
Manual page date{l) Lline 1

The manual page divides information about the command into separate sections,
shown in Table 3.3.

Table 3.3 The Linux man Page Format

‘Reporting bugs HPI‘OVideS information on where to report any bugs found

‘Section ‘ ‘Description ‘
’Name HDisplays the command name and a short description ‘
‘Synopsis HShows the format of the command ‘
‘Description HDescribes each command option ‘
‘Author HProvides information on the person who developed the command ‘

|

‘Copyright HProvides information on the copyright status of the command code ‘

‘See Also HRefers you to any similar commands available ‘

You can step through the man pages by pressing the spacebar or using the arrow keys
to scroll forward and backward through the man page text (assuming that your terminal
emulation package supports the arrow key functions). When you are done with the man
pages, press the q key to quit.

To see information about the bash shell, look at the man pages for it using the
following command:

$ man bash

76

The Linux Command Line & Shell Scripting Bible 2™ Edition

This allows you to step through all of the man pages for the bash shell. This is
extremely handy when building scripts, as you don't have to refer back to books or
Internet sites to look up specific formats for commands. The manual is always there for
you in your session.

Filesystem Navigation

As you can see from the shell prompt, when you start a shell session, you are usually
placed in your home directory. Most often, you will want to break out of your home
directory and explore other areas in the Linux system. This section describes how to do
that using shell commands. Before we do that, however, let's take a tour of just what
the Linux filesystem looks like so we know where we're going.

The Linux Filesystem

If you're new to the Linux system, you may be confused by how it references files and
directories, especially if you're used to the way that the Microsoft Windows operating
system does that. Before exploring the Linux system, it helps to have an understanding
of how it's laid out.

The first difference you'll notice is that Linux does not use drive letters in pathnames.
In the Windows world, the physical drives installed on the PC determine the pathname
of the file. Windows assigns a letter to each physical disk drive, and each drive contains
its own directory structure for accessing files stored on it.

For example, in Windows you may be used to seeing the filepaths such as:
c:\Users\Rich\Documents\test.doc.

This indicates that the file test.doc is located in the directory Documents, which itself
is located in the directory Rich. The Rich directory is contained under the directory
Users, which is located on the hard disk partition assigned the letter C (usually the first
hard drive on the PC).

The Windows filepath tells you exactly which physical disk partition contains the file
named test.doc. If you wanted to save a file on a flash drive, it could be, for example,
designated by the J drive. You would click the icon for the J drive, which would
automatically use the filepath J:\test.doc. This path indicates that the file is located at
the root of the drive assigned the letter).

This is not the method used by Linux. Linux stores files within a single directory
structure, called a virtual directory. The virtual directory contains filepaths from all the
storage devices installed on the PC, merged into a single directory structure.

The Linux virtual directory structure contains a single base directory, called the root.
Directories and files beneath the root directory are listed based on the directory path
used to get to them, similar to the way Windows does it.

Tip
You'll notice that Linux uses a forward slash (/) instead of a backward slash (\) to denote directories
in filepaths. The backslash character in Linux denotes an escape character and causes all sorts of

77

The Linux Command Line & Shell Scripting Bible 2™ Edition

problems when you use it in a filepath. This may take some getting used to if you're coming from a
Windows environment.

For example, the Linux filepath /home/rich/Documents/test.doc indicates only
that the file test.doc is in the directory Documents, under the directory rich, which is
contained in the directory home. It doesn't provide any information as to which physical
disk on the PC the file is stored on.

The tricky part about the Linux virtual directory is how it incorporates each storage
device. The first hard drive installed in a Linux PC is called the root drive. The root drive
contains the core of the virtual directory. Everything else builds from there.

On the root drive, Linux creates special directories called mount points. Mount points
are directories in the virtual directory where you assign additional storage devices.

The virtual directory causes files and directories to appear within these mount point
directories, even though they are physically stored on a different drive.

Often the system files are physically stored on the root drive, while user files are
stored on a different drive, as shown in Figure 3.2.

Figure 3.2 The Linux file structure

Disk 1
Disk 2
—— hin
— barbara
— etc
home — jessica
L st — katie
— rich
—— var

b A . 7

In Figure 3.2, there are two hard drives on the PC. One hard drive is associated with
the root of the virtual directory (indicated by a single forward slash). Other hard drives
can be mounted anywhere in the virtual directory structure. In this example, the second
hard drive is mounted at the location /home, which is where the user directories are
located.

The Linux filesystem structure has evolved from the Unix file structure. Unfortunately,
the Unix file structure has been somewhat convoluted over the years by different flavors
of Unix. Nowadays it seems that no two Unix or Linux systems follow the same
filesystem structure. However, there are a few common directory names that are used
for common functions. Table 3.4 lists some of the more common Linux virtual directory
names.

Table 3.4 Common Linux Directory Names

78

The Linux Command Line & Shell Scripting Bible 2™ Edition

‘Directory ‘ ‘Usage

V Hroot of the virtual directory. Normally, no files are placed here.

Vbin Hbinary directory, where many GNU user-level utilities are stored.
Vboot Hboot directory, where boot files are stored.

Vdev Hdevice directory, where Linux creates device nodes.

Vetc Hsystem configuration files directory.

Vhome Hhome directory, where Linux creates user directories.

Vlib Hlibrary directory, where system and application library files are stored.

=
=3

Hmount directory, another common place for mount points used for removable media

Hoptional directory, often used to store optional software packages.

=}
=i
=

Hroot home directory.

)
o
=
=}

Hsystem binary directory, where many GNU admin-level utilities are stored.

g
S

Htemporary directory, where temporary work files can be created and destroyed.

c
17}
4

Huser—installed software directory.

media Hmedia directory, a common place for mount points used for removable media. ‘

iRl s
=]
Q
s

Hvariable directory, for files that change frequently, such as log files.

<
)
-

When you start a new shell prompt, your session starts in your home directory, which
is a unique directory assigned to your user account. When you create a user account,
the system normally assigns a unique directory for the account (see Chapter 6).

In the Windows world, you're probably used to moving around the directory structure
using a graphical interface. To move around the virtual directory from a CLI prompt,
you'll need to learn to use the cd command.

Traversing Directories

You use the change directory command (cd) to move your shell session to another
directory in the Linux filesystem. The format of the cd command is pretty simplistic:
cd destination

The cd command may take a single parameter, destination, which specifies the
directory name you want to go to. If you don't specify a destination on the cd command,
it will take you to your home directory.

The destination parameter, however, can be expressed using two different methods:
» An absolute filepath
* Arelative filepath

The following sections describe the differences between these two methods.

Absolute Filepaths

You can reference a directory name within the virtual directory using an absolute
filepath. The absolute filepath defines exactly where the directory is in the virtual
directory structure, starting at the root of the virtual directory, sort of like a full name for
a directory.

79

The Linux Command Line & Shell Scripting Bible 2™ Edition

Thus, to reference the apache directory, which is contained within the lib directory,
which in turn is contained within the usr directory, you would use the absolute filepath:

/usr/1lib/NetworkManager

With the absolute filepath, there's no doubt as to exactly where you want to go. To
move to a specific location in the filesystem using the absolute filepath, you just specify
the full pathname in the cd command:

rich@testbox[~]$cd /etc

rich@testbox[etc]$

The prompt shows that the new directory for the shell after the cd command is
now /etc. You can move to any level within the entire Linux virtual directory structure
using the absolute filepath:

rich@testbox[~]$ cd /usr/lib/NetworkManager

rich@testbox[NetworkManager]$

However, if you're just working within your own home directory structure, often using
absolute filepaths can get tedious. For example, if you're already in the
directory /home/rich, it seems somewhat cumbersome to have to type the command

cd /home/rich/Documents

just to get to your Documents directory. Fortunately, there's a simpler solution.

Relative Filepaths

Relative filepaths allow you to specify a destination filepath relative to your current
location, without having to start at the root. A relative filepath doesn't start with a
forward slash, indicating the root directory.

Instead, a relative filepath starts with either a directory name (if you're traversing to a

directory under your current directory), or a special character indicating a relative
location to your current directory location. The two special characters used for this are:

» The dot (.) to represent the current directory
* The double dot (. .) to represent the parent directory

The double dot character is extremely handy when trying to traverse a directory
hierarchy. For example, if you are in the Documents directory under your home directory
and need to go to your Desktop directory, also under your home directory, you can do
this:

rich@testbox[Documents]$ cd ../Desktop

rich@testbox[Desktop]$

The double dot character takes you back up one level to your home directory; then
the /Desktop portion then takes you back down into the Desktop directory. You can use
as many double dot characters as necessary to move around. For example, if you are in
your home directory (/home/rich) and want to go to the /etc directory, you could
type the following:

rich@testbox[~]1$ cd ../../etc

rich@testbox[etc]$

Of course, in a case like this, you actually have to do more typing to use the relative
filepath rather than just typing the absolute filepath, /etc!

80

The Linux Command Line & Shell Scripting Bible 2™ Edition

File and Directory Listing

The most basic feature of the shell is the ability to see what files are available on the
system. The list command (1s) is the tool that helps do that. This section describes
the 1s command and all of the options available to format the information it can
provide.

Basic Listing

The 1s command at its most basic form displays the files and directories located in your
current directory:

$ 1s

4rich Desktop Download Music Pictures store store.zip test

backup Documents Drivers myprog Public store.sql Templates Videos

Notice that the 1s command produces the listing in alphabetical order (in columns
rather than rows). If you're using a terminal emulator that supports color,
the s command may also show different types of entries in different colors.
The LS COLORS environment variable controls this feature. Different Linux distributions
set this environment variable depending on the capabilities of the terminal emulator.

If you don't have a color terminal emulator, you can use the -F parameter with
the s command to easily distinguish files from directories. Using the -F parameter
produces the following output:

$ 1s -F

4rich/ Documents/ Music/ Public/ store.zip Videos/
backup.zip Download/ myprog* store/ Templates/

Desktop/ Drivers/ Pictures/ store.sql test

$

The -F parameter now flags the directories with a forward slash, to help identify them
in the listing. Similarly, it flags executable files (like the myprog file above) with an
asterisk, to help you more easily find the files that can be run on the system.

The basic s command can be somewhat misleading. It shows the files and
directories contained in the current directory, but not necessarily all of them. Linux often
uses hidden files to store configuration information. In Linux, hidden files are files with
file names that start with a period. These files don't appear in the default lslisting
(thus, they are called hidden).

To display hidden files along with normal files and directories, use the -
a parameter. Figure 3.3 shows an example of wusing the -a parameter with
the s command.

Figure 3.3 Using the -a parameter with the 1s command

81

The Linux Command Line & Shell Scripting Bible 2™ Edition

055 Terminal

File Edit View Search Terminal Help

$ 1s -8
.dmrc .gtk-bookmarks
0¢C .Qrkrc-2.8-kded

plif postponed s [
.ICEauthority .printer-groups.xml wviminfo
kchmviews .profile tualB

.esd auth

.bash_history
.bash logout]
.bashrc jegl-8 icromedia .pulse-cookie

gksu. lock y-L

.selected editor

sic sent .Xsession-errors

.my.cnf ssh sion-errors.old
.mysql history .sudo as admin successTul

Wow, that's quite a difference. In a home directory for a user who has logged in to the
system from a graphical desktop, you'll see lots of hidden configuration files. This
particular example is from a user logged in to a GNOME desktop session. Also notice
that there are three files that begin with .bash. These files are hidden files that are used
by the bash shell environment. These features are covered in detail in Chapter 5.

The -R parameter is another option the 1s command can use. It shows files that are
contained within directories in the current directory. If you have lots of directories, this
can be quite a long listing. Here's a simple example of what the -R parameter produces:

$ 1s -F -R

filel testl/ test2/

./testl:

myprogl* myprog2*

./test2:

$

Notice that first, the -R parameter shows the contents of the current directory, which
is a file (filel) and two directories (testl and test2). Following that, -R traverses
each of the two directories, showing if any files are contained within each directory.
The test1 directory shows two files (myprogl and myprog2), while the test2directory
doesn't contain any files. If there had been further subdirectories within

82

The Linux Command Line & Shell Scripting Bible 2™ Edition

the testl or test2directories, the -R parameter would have continued to traverse
those as well. As you can see, for large directory structures this can become quite a
large output listing.

Modifying the Information Presented

As you can see in the basic listings, the 1s command doesn't produce a whole lot of
information about each file. For listing additional information, another popular
parameter is -1. The -1 parameter produces a long listing format, providing more
information about each file in the directory:

$ 1s -1
total 2064
drwxrwxr-x 2 rich rich 4096 2010-08-24 22:04 4rich
-rw-r--r-- 1 rich rich 1766205 2010-08-24 15:34 backup.zip
drwxr-xr-x 3 rich rich 4096 2010-08-31 22:24 Desktop
drwxr-xr-x 2 rich rich 4096 2009-11-01 04:06 Documents
drwxr-xr-x 2 rich rich 4096 2009-11-01 04:06 Download
drwxrwxr-x 2 rich rich 4096 2010-07-26 18:25 Drivers
drwxr-xr-x 2 rich rich 4096 2009-11-01 04:06 Music
-rwxr--r-- 1 rich rich 30 2010-08-23 21:42 myprog
drwxr-xr-x 2 rich rich 4096 2009-11-01 04:06 Pictures
drwxr-xr-x 2 rich rich 4096 2009-11-01 04:06 Public
drwxrwxr-x 5 rich rich 4096 2010-08-24 22:04 store
-rw-rw-r-- 1 rich rich 98772 2010-08-24 15:30 store.sql
-rw-r--r-- 1 rich rich 107507 2010-08-13 15:45 store.zip
2

drwxr-xr-x rich rich 4096 2009-11-01 04:06 Templates
drwxr-xr-x 2 rich rich 4096 2009-11-01 04:06 Videos
[rich@testbox~1$

The long listing format lists each file and directory contained in the directory on a
single line. In addition to the file name, the listing shows additional useful information.
The first line in the output shows the total number of blocks contained within the
directory. Following that, each line contains the following information about each file (or
directory):

* The file type—such as directory (d), file (-), character device (c), or block device
(b)
» The permissions for the file (see Chapter 6)

» The number of hard links to the file (see the section “Linking Files” in this
chapter)

» The username of the owner of the file

* The group name of the group the file belongs to
» The size of the file in bytes

* The time the file was modified last

» The file or directory name

83

The Linux Command Line & Shell Scripting Bible 2™ Edition

The -1 parameter is a powerful tool to have. Armed with this information, you can see
just about any information you need to for any file or directory on the system.

The Complete Parameter List

There are lots of parameters for the 1s command that can come in handy as you do file
management. If you use theman command for 1s, you'll see several pages of available
parameters for you to use to modify the output of the 1scommand.

The 1s command uses two types of command line parameters:
* Single-letter parameters
* Full-word (long) parameters

The single-letter parameters are always preceded by a single dash. Full-word
parameters are more descriptive and are preceded by a double dash. Many parameters
have both a single-letter and full-word version, while some have only one type. Table
3.5 lists some of the more popular parameters that will help you out with using the
bash lscommand.

Table 3.5 Some Popular Is Command Parameters

iient%(l:' Full Word Description
-a --all HDon't ignore entries starting with a period. ‘
-A --almost-all HDon't list the . and .. files. ‘
‘ --author HPrint the author of each file. ‘
-b --escape HPrint octal values for nonprintable characters. ‘
‘ --block-size=size HCalculate the block sizes using size-byte blocks. ‘
-B --ignore-backups CDQ(;I;ZSI)i.st entries with the tilde (~) symbol (used to denote backup
-C ‘ ‘ HSort by time of last modification. ‘
-C H HList entries by columns. ‘
‘ --color=when HWhen to use colors (always, never, or auto). ‘
-d --directory i;:ltl lgi(i)ﬁzcctlci)tr]i:ntries instead of contents, and don't dereference
-F ‘ --classify HAppend file-type indicator to entries. ‘
--file-type Only append file-type indicators to some filetypes (not executable
files).
- -format=word Format output as either across, commas, horizontal, long, single-
column, verbose, or vertical.
-g H HList full file information except for the file's owner. ‘
‘ --group-directories-first HList all directories before files. ‘
-G --no-group HIn long listing don't display group names. ‘
-h - -human- readable erg;i);ltzezs using K for kilobytes, M for megabytes, and G for
‘ --si HSame as - h, but use powers of 1000 instead of 1024. ‘

84

The Linux Command Line & Shell Scripting Bible 2™ Edition

-1 --inode HDpryﬂmimhxnmnbm(hmd@ofmwhﬁb.

-1 H HDisplay the long listing format.

-L --dereference HShow information for the original file for a linked file.

-n --numeric-uid-gid HShow numeric userid and groupid instead of names.

-0 H Hln long listing don't display owner names.

-r --reverse HReverse the sorting order when displaying files and directories.
-R --recursive HLmt&mdﬁeamyconwnmlemnﬁvdy

-S --size HPrint the block size of each file.

-S --sort=size HSort the output by file size.

-t --sort=time HSort the output by file modification time.

-u H HDisplay file last access time instead of last modification time.
-U --sort=none HDon't sort the output listing.

-V --sort=version ‘@mtmeompmbyﬁkvmﬁon

-X H HList entries by line instead of columns.

-X --sort=extension HSort the output by file extension.

You can use more than one parameter at a time if you want to. The double dash
parameters must be listed separately, but the single dash parameters can be combined
together into a string behind the dash. A common combination to use is the -
a parameter to list all files, the -1 parameter to list the inode for each file, the -
lparameter to produce a long listing, and the -s parameter to list the block size of the
files. The inode of a file or directory is a unique identification number the kernel assigns
to each object in the filesystem. Combining all of these parameters creates the easy-to-

remember -sail parameter:

$ ls -sail

total 2360

301860 8 drwx------ 36 rich
65473 8 drwxr-xr-x 6 root
360621 8 drwxrwxr-x 2 rich
301862 8 -rw-r--r-- 1 rich
361443 8 drwxrwxr-x 4 rich
301879 8 drwxr-xr-x 3 rich
301871 8 drwxr-xr-x 3 rich
301870 8 -rw------- 1 rich
301872 8 drwxr-xr-x 2 rich
360207 8 drwxrwxr-x 2 rich
301882 8 drwx------ 5 rich
301883 8 drwx------ 2 rich
360338 8 drwx------ 3 rich

rich
root
rich
rich
rich
rich
rich
rich
rich
rich
rich
rich
rich

4096 2010-09-03 15:12 .
4096 2010-07-29 14:20 ..

4096
124
4096
4096
4096
26
4096
4096
4096
4096
4096

2010-08-24
2010-02-12
2010-07-26
2010-07-26
2010-08-31
2009-11-01
2009-11-01
2010-07-26
2010-09-02
2010-09-02
2010-08-06

22:
10:
20:
18:
22:
04:
04:
18:
23:
23:
23:

04
18
31
25
24
06
06
25
40
43
06

4rich
.bashrc
.ccache
.config
Desktop
.dmrc
Download
Drivers
.gconf
.gconfd

.gftp

In addition to the normal -1 parameter output information, you'll see two additional
numbers added to each line. The first number in the listing is the file or directory inode
number. The second number is the block size of the file. The third entry is a diagram of

85

The Linux Command Line & Shell Scripting Bible 2™ Edition

the type of file, along with the file's permissions. We dive into that in more detail in
Chapter 6.

Following that, the next number is the number of hard links to the file (discussed later
in the “Linking Files” section), the owner of the file, the group the file belongs to, the
size of the file (in bytes), a timestamp showing the last modification time by default, and
finally, the actual file name.

Filtering Listing Output

As you've seen in the examples, by default the 1s command lists all of the files in a
directory. Sometimes this can be overkill, especially when you're just looking for
information on a single file.

Fortunately, the 1s command also provides a way for you to define a filter on the
command line. It uses the filter to determine which files or directories it should display
in the output.

The filter works as a simple text-matching string. Include the filter after any command
line parameters you want to use:

$ 1s -1 myprog

-rwxr--r-- 1 rich rich 30 2007-08-23 21:42 myprog

$

When you specify the name of specific file as the filter, the s command only shows
the information for that one file. Sometimes you might not know the exact name of the
file you're looking for. The 1s command also recognizes standard wildcard characters
and uses them to match patterns within the filter:

» A question mark to represent one character
» An asterisk to represent zero or more characters

The question mark can be used to replace exactly one character anywhere in the filter
string. For example:

$ 1s -1 mypro?

-rw-rw-r-- 1 rich rich 0 2010-09-03 16:38 myprob

-rwxr--r-- 1 rich rich 30 2010-08-23 21:42 myprog

$

The filter mypro? matched two files in the directory. Similarly, the asterisk can be
used to match zero or more characters:

$ ls -1 myprob*

-rw-rw-r-- 1 rich rich 0 2010-09-03 16:38 myprob

-rw-rw-r-- 1 rich rich 0 2010-09-03 16:40 myproblem

$

The asterisk matches zero characters in the myprob file, but it matches three
characters in the myproblem file.

This is a powerful feature to use when searching for files when you're not quite sure of
the file names.

86

The Linux Command Line & Shell Scripting Bible 2™ Edition

File Handling

The bash shell provides lots of commands for manipulating files on the Linux filesystem.
This section walks you through the basic commands you will need to work with files from
the CLI for all your file-handling needs.

Creating Files

Every once in a while you will run into a situation where you need to create an empty
file. Sometimes applications expect a log file to be present before they can write to it. In
these situations, you can use the touch command to easily create an empty file:

$ touch testl

$ ls -il testl

1954793 -rw-r--r-- 1 rich rich O Sep 1 09:35 testl

$

The touch command creates the new file you specify and assigns your username as
the file owner. Because the -1ilparameter was used for the Ls command, the first entry
in the listing shows the inode number assigned to the file. Every file on a Linux
filesystem has a unique inode number.

Notice that the file size is zero because the touch command just created an empty
file. The touch command can also be used to change the access and modification times
on an existing file without changing the file contents:

$ touch testl

$ 1s -1 testl

-rw-r--r-- 1 rich rich O Sep 1 09:37 testl

$

The modification time of testl is now updated from the original time. If you want to
change only the access time, use the -a parameter. To change only the modification
time, use the -m parameter. By default, touch uses the current time. You can specify
the time by using the -t parameter with a specific timestamp:

$ touch -t 201112251200 testl

$ 1s -1 testl

-rw-r--r-- 1 rich rich 0 Dec 25 2011 testl

$

Now the modification time for the file is set to a date significantly in the future from
the current time.

Copying Files
Copying files and directories from one location in the filesystem to another is a common
practice for system administrators. The cp command provides this feature.

In its most basic form, the cp command uses two parameters, the source object and
the destination object:

cp source destination

87

The Linux Command Line & Shell Scripting Bible 2™ Edition

When both the source and destination parameters are file names,
the cp command copies the source file to a new file with the file name specified as the
destination. The new file acts like a brand new file, with an updated file creation and last
modified times:

$ cp testl test2

$ ls -il

total O

1954793 -rw-r--r-- 1 rich rich 0 Dec 25 2011 testl
1954794 -rw-r--r-- 1 rich rich 0 Sep 1 09:39 test2
$

The new file test2 shows a different inode number, indicating that it's a completely
new file. You'll also notice that the modification time for the test2 file shows the time
that it was created. If the destination file already exists, the cp command will prompt
you to answer whether or not you want to overwrite it:

$ cp testl test2

cp: overwrite ‘test2’'? y

$

If you don't answer y, the file copy will not proceed. You can also copy a file to an
existing directory:

$ cp testl dirl

$ ls -il dirl

total O

1954887 -rw-r--r-- 1 rich rich O Sep 6 09:42 testl

$

The new file is now under the dirl directory, using the same file name as the
original. These examples all used relative pathnames, but you can just as easily use the
absolute pathname for both the source and destination objects.

To copy a file to the current directory you're in, you can use the dot symbol:

$ cp /home/rich/dirl/testl .

cp: overwrite ‘./testl’?

As with most commands, the cp command has a few command line parameters to
help you out. These are shown in Table 3.6.

Table 3.6 The cp Command Parameters

‘Parameter HDescription ‘
-a HArchive files by preserving their attributes. ‘
-b HCreate a backup of each existing destination file instead of overwriting it. ‘
-d ‘ ‘Preserve. ‘
-f HF orce the overwriting of existing destination files without prompting. ‘
-1 HPrompt before overwriting destination files. ‘
-1 HCreate a file link instead of copying the files. ‘
-p HPreserve file attributes if possible. ‘
-r HCopy files recursively. ‘

88

The Linux Command Line & Shell Scripting Bible 2™ Edition

-R HCopy directories recursively. ‘
-S HCreate a symbolic link instead of copying the file. ‘
-S HOverride the backup feature. ‘
-u HCopy the source file only if it has a newer date and time than the destination (update). ‘
-V HVerbose mode, explaining what's happening. ‘
-X HRestrict the copy to the current filesystem. ‘

Use the -p parameter to preserve the file access or modification times of the original
file for the copied file.

$ cp -p testl test3

$ 1s -il
total 4
1954886 drwxr-xr-x 2 rich rich 4096 Sep 1 09:42 dirl/
1954793 -rw-r--r-- 1 rich rich 0 Dec 25 2011 testl
1954794 -rw-r--r-- 1 rich rich O Sep 1 09:39 test2
1954888 -rw-r--r-- 1 rich rich 0 Dec 25 2011 test3

$

Now, even though the test3 file is a completely new file, it has the same timestamps
as the original test1 file.

The -R parameter is extremely powerful. It allows you to recursively copy the
contents of an entire directory in one command:

$ cp -R dirl dir2

$ 1s -1

total 8

drwxr-xr-x 2 rich rich 4096 Sep 6 09:42 dirl/
drwxr-xr-x 2 rich rich 4096 Sep 6 09:45 dir2/
-rw-r--r-- 1 rich rich 0 Dec 25 2011 testl
-rw-r--r-- 1 rich rich O Sep 6 09:39 test2
-rw-r--r-- 1 rich rich 0 Dec 25 2011 test3
$

Now dir2is a complete copy of dirl. You can also use wildcard characters in
your cp commands:

$ cp -f test* dir2

$ ls -al dir2

total 12

drwxr-xr-x 2 rich rich 4096 Sep 6 10:55 ./
drwxr-xr-x 4 rich rich 4096 Sep 6 10:46 ../
-rw-r--r-- 1 rich rich 0 Dec 25 2011 testl
-rw-r--r-- 1 rich rich O Sep 6 10:55 test2
-rw-r--r-- 1 rich rich 0 Dec 25 2011 test3
$

This command copied all of the files that started with testtodir2. The -
f parameter was included to force the overwrite of the testl file that was already in
the directory without asking.

89

The Linux Command Line & Shell Scripting Bible 2™ Edition

Linking Files

You may have noticed a couple of the parameters for the cp command referred to
linking files. This is a pretty cool option available in the Linux filesystems. If you need to
maintain two (or more) copies of the same file on the system, instead of having
separate physical copies, you can use one physical copy and multiple virtual copies,
called links. A link is a placeholder in a directory that points to the real location of the
file. There are two different types of file links in Linux:

* A symbolic, or soft link
* Ahard link

The hard link creates a separate file that contains information about the original file
and where to locate it. When you reference the hard link file, it's just as if you're
referencing the original file:

$ cp -1 testl test4d

$ 1s -il

total 16

1954886 drwxr-xr-x 2 rich rich 4096 Sep 1 09:42 dirl/
1954889 drwxr-xr-x 2 rich rich 4096 Sep 1 09:45 dir2/
1954793 -rw-r--r-- 2 rich rich O Sep 1 09:51 testl
1954794 -rw-r--r-- 1 rich rich 0 Sep 1 09:39 test2
1954888 -rw-r--r-- 1 rich rich 0 Dec 25 2011 test3
1954793 -rw-r--r-- 2 rich rich O Sep 1 09:51 test4

$

The -1 parameter created a hard link for the testl file called test4. In the file
listing, you can see that the inode number of both the testl and test4 files is the
same, indicating that, in reality, they are both the same file. Also notice that the link
count (the third item in the listing) now shows that both files have two links.

Note

You can only create a hard link between files on the same physical medium. You can't create
a hard link between files under separate mount points. In that case, you'll have to use a soft
link.

On the other hand, the -s parameter creates a symbolic, or soft link:

$ cp -s testl tests

$ 1s -il test*

total 16

1954793 -rw-r--r-- 2 rich rich 6 Sep 1 09:51 testl
1954794 -rw-r--r-- 1 rich rich 0 Sep 1 09:39 test2
1954888 -rw-r--r-- 1 rich rich 0 Dec 25 2011 test3
1954793 -rw-r--r-- 2 rich rich 6 Sep 1 09:51 test4
1954891 Tlrwxrwxrwx 1 rich rich 5 Sep 1 09:56 test5 -> testl

$

There are a couple of things to notice in the file listing, First, you'll notice that the
new test5 file has a different inode number than the testl file, indicating that the
Linux system treats it as a separate file. Second, the file size is smaller. A linked file

90

The Linux Command Line & Shell Scripting Bible 2™ Edition

needs to store only information about the source file, not the actual data in the file. The
file name area of the listing shows the relationship between the two files.

Tip
Instead of using the cp command, if you want to link files you can also use the 1n command. By

default, the Tn command creates hard links. If you want to create a soft link, you'll still need to use
the -s parameter.

Be careful when copying linked files. If you use the cp command to copy a file that's
linked to another source file, all you're doing is making another copy of the source file.
This can quickly get confusing. Instead of copying the linked file, you can create another
link to the original file. You can have many links to the same file with no problems.
However, you also don't want to create soft links to other soft-linked files. This creates a
chain of links that can not only be confusing but also be easily broken, causing all sorts
of problems.

Renaming Files

In the Linux world, renaming files is called moving. The mv command is available to
move both files and directories to another location:

$ mv test2 testb

$ 1s -il test*

1954793 -rw-r--r-- 2 rich rich 6 Sep 1 09:51 testl
1954888 -rw-r--r-- 1 rich rich 0 Dec 25 2011 test3
1954793 -rw-r--r-- 2 rich rich 6 Sep 1 09:51 test4
1954891 Tlrwxrwxrwx 1 rich rich 5 Sep 1 09:56 test5 -> testl
1954794 -rw-r--r-- 1 rich rich O Sep 1 09:39 testb

$

Notice that moving the file changed the file name but kept the same inode number
and the timestamp value. Moving a file with soft links is a problem:

$ mv testl test8

$ 1s -il test*

total 16

1954888 -rw-r--r-- 1 rich rich 0 Dec 25 2011 test3
1954793 -rw-r--r-- 2 rich rich 6 Sep 1 09:51 test4
1954891 Trwxrwxrwx 1 rich rich 5 Sep 1 09:56 test5 -> testl
1954794 -rw-r--r-- 1 rich rich 0 Sep 1 09:39 test6
1954793 -rw-r--r-- 2 rich rich 6 Sep 1 09:51 test8

[rich@test2 clsc]$ mv test8 testl

The test4 file that uses a hard link still uses the same inode number, which is
perfectly fine. However, thetest5 file now points to an invalid file, and it is no longer a
valid link.

You can also use the mv command to move directories:
$ mv dir2 dir4d

91

The Linux Command Line & Shell Scripting Bible 2™ Edition

The entire contents of the directory are unchanged. The only thing that changes is the
name of the directory. Thus, the mv command operates much faster than
the cp command.

Deleting Files

Most likely at some point in your Linux career, you'll want to be able to delete existing
files. Whether it's to clean up a filesystem or to remove a software package, there are
always opportunities to delete files.

In the Linux world, deleting is called removing. The command to remove files in the
bash shell is rm. The basic form of the rm command is pretty simple:

$ rm -i test2

rm: remove ‘test2’'? vy

$ s -1

total 16

drwxr-xr-x 2 rich rich 4096 Sep 1 09:42 dirl/
drwxr-xr-x 2 rich rich 4096 Sep 1 09:45 dir2/
-rw-r--r-- 2 rich rich 6 Sep 1 09:51 testl
-rw-r--r-- 1 rich rich 0 Dec 25 2011 test3
-rw-r--r-- 2 rich rich 6 Sep 1 09:51 test4

1 rwXx rwx rwx 1 rich rich 5 Sep 1 09:56 test5 -> testl
$

Notice that the command prompts you to make sure that you're serious about
removing the file. There's no recycle bin or trashcan in the bash shell. Once you remove
a file, it's gone forever.

Now, here's an interesting tidbit about deleting a file that has links to it:

$ rm testl

$ 1s -1

total 12

drwxr-xr-x 2 rich rich 4096 Sep 1 09:42 dirl/
drwxr-xr-x 2 rich rich 4096 Sep 1 09:45 dir2/
-rw-r--r-- 1 rich rich 0 Dec 25 2011 test3
-rw-r--r-- 1 rich rich 6 Sep 1 09:51 test4
TrwXx rwxrwx 1 rich rich 5 Sep 1 09:56 test5 -> testl
$ cat testd

hello

$ cat testb

cat: test5: No such file or directory

$

The testl file was removed, which had both a hard link with the test4 file and a
soft link with the test5 file. Notice what happened. Both of the linked files still appear,
even though the testl file is now gone (although on my color terminal the test5 file
name now appears in red). When you look at the contents of the test4 file that was a
hard link, it still shows the contents of the file. When you look at the contents of
the test5 file that was a soft link, bash indicates that it doesn't exist anymore.

92

The Linux Command Line & Shell Scripting Bible 2™ Edition

Remember that the hard link file uses the same inode number as the original file. The
hard link file maintains that inode number until you remove the last file hard-linked to it,
preserving the data! All the soft link file knows is that the underlying file is now gone, so
it has nothing to point to. This is an important feature to remember when working with
linked files.

One other feature of the rm command, if you're removing lots of files and don't want
to be bothered with the prompt, is to use the - f parameter to force the removal. Just be
careful!

Tip
As with copying files, you can use wildcard characters with the rm command. Again, use caution
when doing this, as anything your remove, even by accident, is gone forever!

Directory Handling

In Linux there are a few commands that work for both files and directories (such as
the cp command), and some that only work for directories. To create a new directory,
you'll need to use a specific command, which is covered in this section. Removing
directories can get interesting, so that is covered in this section as well.

Creating Directories

There's not much to creating a new directory in Linux—just use the mkdir command:
$ mkdir dir3

$ 1s -il

total 16

1954886 drwxr-xr-x 2 rich rich 4096 Sep 1 09:42 dirl/
1954889 drwxr-xr-x 2 rich rich 4096 Sep 1 10:55 dir2/
1954893 drwxr-xr-x 2 rich rich 4096 Sep 1 11:01 dir3/
1954888 -rw-r--r-- 1 rich rich 0 Dec 25 2011 test3
1954793 -rw-r--r-- 1 rich rich 6 Sep 1 09:51 test4

$
The system creates a new directory and assigns it a new inode number.

Deleting Directories

Removing directories can be tricky, but there's a reason for that. There are lots of
opportunities for bad things to happen when you start deleting directories. The bash
shell tries to protect us from accidental catastrophes as much as possible. The basic
command for removing a directory is rmdir:

$ rmdir dir3

$ rmdir dirl

rmdir: dirl: Directory not empty

$

93

The Linux Command Line & Shell Scripting Bible 2™ Edition

By default, the rmdir command only works for removing empty directories. Because
there is a file in the dirldirectory, the rmdir command refuses to remove it. You can
remove nonempty directories using the --ignore-fail-on-non-empty parameter.

Our friend the rm command can also help us out some when handling directories.

If you try using it with no parameters, as with files, you'll be somewhat disappointed:

$ rm dirl

rm: dirl: is a directory

$

However, if you really want to remove a directory, you can use the -r parameter to
recursively remove the files in the directory, then the directory itself:

$rm -r dir2

rm: descend into directory ‘dir2’'? vy

rm: remove ‘dir2/testl’? y

rm: remove ‘dir2/test3’'? vy

rm: remove ‘dir2/testd4’'? y

rm: remove directory ‘dir2’? y

$

While this works, it's somewhat awkward. Notice that you still must verify every file

that gets removed. For a directory with lots of files and subdirectories, this can become
tedious.

The ultimate solution for throwing caution to the wind and removing an entire
directory, contents and all, is therm command with both the - r and - f parameters:

$rm -rf dir2

$

That's it. No warnings, no fanfare, just another shell prompt. This, of course, is an
extremely dangerous tool to have, especially if you're logged in as the root user
account. Use it sparingly, and only after triple checking to make sure that you're doing
exactly what you want to do.

Note

You may have noticed in the last example that the two command line parameters were
combined using one dash. This is a feature in the bash shell that allows you to combine
command line parameters to help cut down on typing.

Viewing File Contents

So far we've covered everything there is to know about files, except for how to peek
inside of them. There are several commands available for taking a look inside files
without having to pull out an editor (see Chapter 11). This section demonstrates a few of
the commands you have available to help you examine files.

Viewing File Statistics

94

The Linux Command Line & Shell Scripting Bible 2™ Edition

You've already seen that the ls command can be used to provide lots of useful
information about files. However, there's still more information that you can't see in
the 1s command (or at least not all at once).

The stat command provides a complete rundown of the status of a file on the
filesystem:

$ stat testlO

File: “test10”

Size: 6 Blocks: 8 Regular File

Device: 306h/774d Inode: 1954891 Links: 2

Access: (0644/-rw-r--r--) Uid: (501/ rich) Gid: (501/ rich)

Access: Sat Sep 1 12:10:25 2010

Modify: Sat Sep 1 12:11:17 2010

Change: Sat Sep 1 12:16:42 2010

$

The results from the stat command show just about everything you'd want to know
about the file being examined, even down to the major and minor device numbers of
the device where the file is being stored.

Viewing the File Type

Despite all of the information the stat command produces, there's still one piece of
information missing—the file type. Before you go charging off trying to list out a 1000-
byte file, it's usually a good idea to get a handle on what type of file it is. If you try
listing a binary file, you'll get lots of gibberish on your monitor and possibly even lock up
your terminal emulator.

The file command is a handy little utility to have around. It has the ability to peek
inside of a file and determine just what kind of file it is:

$ file testl

testl: ASCII text

$ file myscript

myscript: Bourne shell script text executable

$ file myprog

myprog: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),

dynamically linked (uses shared libs), not stripped

$

The file command classifies files into three categories:

» Text files: Files that contain printable characters
» Executable files: Files that you can run on the system

+ Data files: Files that contain nonprintable binary characters, but that you can't
run on the system

The first example shows a text file. The file command determined not only that the

file contains text but also the character code format of the text. The second example

shows a text script file. While the file is text, because it's a script file, you can execute

95

The Linux Command Line & Shell Scripting Bible 2™ Edition

(run) it on the system. The final example is a binary executable program.
Thefile command determines the platform that the program was compiled for and
what types of libraries it requires. This is an especially handy feature if you have a
binary executable program from an unknown source.

Viewing the Whole File

If you have a large text file on your hands, you may want to be able to see what's inside
of it. There are three different commands in Linux that can help you out here.

The cat Command

The cat command is a handy tool for displaying all of the data inside a text file:
$ cat testl
hello

This is a test file.

That we'll use to test the cat command.

$
Nothing too exciting, just the contents of the text file. There are a few parameters you
can use with the catcommand, however, that can help you out.

The -n parameter numbers all of the lines for you:
$ cat -n testl

1 hello
2
3 This is a test file.
4
5
6

That we'll use to test the cat command.

$

That feature will come in handy when you're examining scripts. If you just want to
number the lines that have text in them, the -b parameter is for you:

$ cat -b testl

1 hello
2 This is a test file.

3 That we'll use to test the cat command.

96

The Linux Command Line & Shell Scripting Bible 2™ Edition

If you need to compress multiple blank lines into a single blank line, use the -
S parameter:

$ cat -s testl
hello

This is a test file.

That we'll use to test the cat command.
$

Finally, if you don't want tab characters to appear, use the -T parameter:
$ cat -T testl
hello

This is a test file.

That we'll use to"Itest the cat command.
$
The -T parameter replaces any tabs in the text with the "I character combination.

For large files, the cat command can be somewhat annoying. The text in the file will
just quickly scroll off of the monitor without stopping. Fortunately, there's a simple way
to solve this problem.

The more Command

The main drawback of the cat command is that you can't control what's happening
once you start it. To solve that problem, developers created the more command.
The more command displays a text file, but stops after it displays each page of data. A
sample more screen is shown in Figure 3.4.

Figure 3.4 Using the more command to display a text file

[Terminal

File Edit View Search Terminal Help

root:x:0:0:root:/root:/bin/bash

daemon:x:1:1:daemon: /usr/sbin: /bin/sh

bin:x:2:2:bin:/bin:/bin/sh

sys:x:3:3:sys:/dev:/bin/sh

sync:x:4:65534:sync: /bin: /bin/sync

games:x:5:60:games: /usr/games: /bin/sh

man:x:6:12:man: /var/cache/man: /bin/sh
1p:x:7:7:1p:/var/spool/Lpd:/bin/sh

mail:x:8:8:mail:/var/mail:/bin/sh

news:x:9:9:news: /var/spool/news: /bin/sh
uucp:x:10:10: uucp: /var/spool/uucp: /bin/sh
proxy:x:13:13:proxy:/bin: /bin/sh
www-data:x:33:33:www-data: /var/www:/bin/sh
backup:x:34:34:backup:/var/backups: /bin/sh

list:x:38:38:Mailing List Manager:/var/list:/bin/sh
irc:x:39:39:ircd:/var/run/ircd: /bin/sh
gnats:x:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/bin/sh
nobody: x:65534: 65534 :nobody : /nonexistent: /bin/sh
libuuid:x:100;161::/var/1ib/1ibuuid: /bin/sh
syslog:x:101:183:: /home/syslog: /bin/false
messagebus:x:102:165::/var/run/dbus: /bin/false
avahi-autoipd:x:183:188:Avahi autoip daemon,,,:/var/lib/avahi-autoipd:/bin/false
avahi:x:104:109:Avahi mDNS daemon,,,:/var/run/avahi-daemon:/bin/false
--More- - (59%)

97

The Linux Command Line & Shell Scripting Bible 2™ Edition

Notice that at the bottom of the screen in Figure 3.4, the more command displays a
tag showing that you're still in the more application and how far along in the text file
you are. This is the prompt for the more command. At this point, you can enter one of
several options, shown in Table 3.7.

Table 3.7 The more Command Options

‘Option ‘ ‘Description

‘H HDisplay a help menu.

‘Spacebar HDisplay the next screen of text from the file.

‘z HDisplay the next screen of text from the file.

‘ENTER HDisplay one more line of text from the file.

‘d HDisplay a half-screen (11 lines) of text from the file.
‘q ‘ ‘Exit the program.

‘s HSkip forward one line of text.

‘f HSkip forward one screen of text.

Vexpression HSearch for the text expression in the file.

‘n HSearch for the next occurrence of the last specified expression

’ HGO to the first occurrence of the specified expression.

‘!cmd HExecute a shell command.

‘v HStart up the vi editor at the current line.

‘CTRL—L HRedraw the screen at the current location in the file.

‘: HDisplay the current line number in the file.

|

|

|

|

|

|

|

|

|
Tb HSkip backward one screen of text. ‘
|
|
|

|

|

|

|

‘. HRepeat the previous command.

The more command allows some rudimentary movement through the text file. For
more advanced features, try the Llesscommand.

The less Command

Although from its name it sounds like it shouldn't be as advanced as
the more command, the less command is actually a play on words and is an advanced
version of the more command (the less command name comes from the phrase “less
is more”). It provides several very handy features for scrolling both forward and
backward through a text file, as well as some pretty advanced searching capabilities.

The less command can also display the contents of a file before it finishes reading
the entire file. This is a serious drawback for both the cat and more commands when
viewing extremely large files.

The less command operates much the same as the more command, displaying one
screen of text from a file at a time.Figure 3.5 shows the less command in action.

Figure 3.5 Viewing a file using the less command

98

The Linux Command Line & Shell Scripting Bible 2™ Edition

r
Terminal

File Edit View Search Terminal Help

daemon:x:1:1:daemeon: fusr/sbin: /bin/sh

bin:x:2:2:bin:/bin:/bin/sh

sys:x:3:3:sys:/dev:/bin/sh

sync:x:4:65534:sync: /bin: /bin/sync

games:x:5:60:games: /usr/games: /bin/sh

man:x:6:12:man: /var/cache/man:/bin/sh
1p:x:7:7:1p:/var/spool/lpd:/bin/sh

mail:x:8:8:mail:/var/mail:/bin/sh

news:x:9:9:news: /var/spool/news: /bin/sh
uucp:x:10:16: uucp: /var/spool/uucp: /bin/sh
proxy:x:13:13:proxy: /bin: /bin/sh
ww-data:x:33:33:www-data: /var/www: /bin/sh
backup:x:34:34:backup:/var/backups: /bin/sh

list:x:38:38:Mailing List Manager:/var/list:/bin/sh
irc:x:39:39:ircd:/var/run/ircd: /bin/sh

gnats:x:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/bin/sh
nobody: x : 65534 : 65534 :nobody : /fnonexistent: /bin/sh
libuuid:x:100:181::/var/lib/1libuuid: /bin/sh

syslog:x:101:103:; /home/syslog: /bin/false

messagebus:x:182:1685:: /var/run/dbus:/bin/false
avahi-autoipd:x:183:1688:Avahl autoip daemon,,,:/var/lib/avahi-autoipd:/bin/false
avahi:x:164:169:Avahi mDNS daemon,,,:/var/run/avahi-daemon:/bin/false
couchdb:x:105:113: CouchDB Administrator,,,:/var/lib/couchdb: /bin/bash

Notice that the less command provides additional information in its prompt, showing
the total number of lines in the file and the range of lines currently displayed.
The less command supports the same command set as the morecommand plus lots
more options. To see all of the options available, look at the man pages for
the less command. One set of features is that the less command recognizes the up
and down arrow keys as well as the page up and page down keys (assuming that you're
using a properly defined terminal). This gives you full control when viewing a file.

Viewing Parts of a File

Often the data you want to view is located either right at the top or buried at the bottom
of a text file. If the information is at the top of a large file, you still need to wait for
the cat or more commands to load the entire file before you can view it. If the
information is located at the bottom of a file (such as a log file), you need to wade
through thousands of lines of text just to get to the last few entries. Fortunately, Linux
has specialized commands to solve both of these problems.

The tail Command

The tail command displays the last group of lines in a file. By default, it will show the
last 10 lines in the file, but you can change that with command line parameters, shown
in Table 3.8.

Table 3.8 The tail Command Line Parameters

‘Parameter HDescription

-C bytes HDisplay the last byte's number of bytes in the file.

-n lines HDisplay the last line's number of lines in the file.

--pid=PID | Along with - f, follows a file until the process with ID PID terminates.

-S sec HAlong with - f, sleeps for sec seconds between iterations.

|
|
|
-f HKeeps the tail program active and continues to display new lines as they're added to the file. ‘
|
|
|

-V HAlways displays output headers giving the file name.

99

The Linux Command Line & Shell Scripting Bible 2™ Edition

“- q HNever displays output headers giving the file name. ”

The - f parameter is a pretty cool feature of the tail command. It allows you to peek
inside a file as it's being used by other processes. The tail command stays active and
continues to display new lines as they appear in the text file. This is a great way to
monitor the system log file in real-time mode.

The head Command

While not as exotic as the tail command, the head command does what you'd expect;
it displays the first group of lines at the start of a file. By default, it will display the first
10 lines of text. Similar to the tail command, it supports the -c and -n parameters so
that you can alter what's displayed.

Usually the beginning of a file doesn't change, so the head command doesn't support
the - f parameter feature. Thehead command is a handy way to just peek at the
beginning of a file if you're not sure what's inside, without having to go through the
hassle of displaying the entire file.

Summary

This chapter covered the basics of working with the Linux filesystem from a shell
prompt. We began with a discussion of the bash shell and showed you how to interact
with the shell. The command line interface (CLI) uses a prompt string to indicate when
it's ready for you to enter commands. You can customize the prompt string to display
useful information about your system, your logon ID, and even dates and times.

The bash shell provides a wealth of utilities you can use to create and manipulate
files. Before you start playing with files, it's a good idea to understand how Linux stores
them. This chapter discussed the basics of the Linux virtual directory and showed you
how Linux references store media devices. After describing the Linux filesystem, the
chapter walked you through using the cd command to move around the virtual
directory.

After showing you how to get to a directory, the chapter demonstrated how to use
the 1s command to list the files and subdirectories. There are lots of parameters that
customize the output of the s command. You can obtain information on files and
directories just by using the 1s command.

The touch command is useful for creating empty files and for changing the access or
modification times on an existing file. The chapter also discussed using
the cp command to copy existing files from one location to another. It walked you
through the process of linking files instead of copying them, providing an easy way to
have the same file in two locations without making a separate copy. The cp command
does this, as does the Ln command.

Next, you learned how to rename files (called moving) in Linux using
the mv command, and saw how to delete files (called removing) using the rm command.
It also showed you how to perform the same tasks with directories, using
the mkdir and rmdir commands.

100

The Linux Command Line & Shell Scripting Bible 2™ Edition

Finally, the chapter closed with a discussion on viewing the contents of files.
The cat, more, and less commands provide easy methods for viewing the entire
contents of a file, while the tail and head commands are great for peeking inside a file
to just see a small portion of it.

The next chapter continues the discussion on bash shell commands. We'll take a look
at more advanced administrator commands that will come in handy as you administer
your Linux system.

Chapter 4

More bash Shell Commands

In This Chapter

101

Part 1l: Becoming a Linux Power User

98

This step changes the permissions of the directory to give you complete access
and everyone else no access at all. (The new permissions should read rwx------)

5. Make the test directory your current directory as follows:

$ cd test

S pwd
/home/joe/test

If you followed along, at this point a subdirectory of your home directory called test is
your current working directory. You can create files and directories in the test directory
along with the descriptions in the rest of this chapter.

Using Metacharacters and Operators

Whether you are listing, moving, copying, removing, or otherwise acting on files in
your Linux system, certain special characters, referred to as metacharacters and opera-
tors, help you to work with files more efficiently. Metacharacters can help you match one
or more files without completely typing each file name. Operators enable you to direct
information from one command or file to another command or file.

Using file-matching metacharacters

To save you some keystrokes and to enable you to refer easily to a group of files, the
bash shell lets you use metacharacters. Any time you need to refer to a file or directory,
such as to list it, open it, or remove it, you can use metacharacters to match the files you
want. Here are some useful metacharacters for matching filenames:

B * — Matches any number of characters.
® ? — Matches any one character.

m [...] — Matches any one of the characters between the brackets, which can
include a hyphen-separated range of letters or numbers.

Try out some of these file-matching metacharacters by first going to an empty directory (such
as the test directory described in the previous section) and creating some empty files:

S touch apple banana grape grapefruit watermelon

The touch command creates empty files. The commands that follow show you how to
use shell metacharacters with the 1s command to match filenames. Try the following
commands to see whether you get the same responses:

S ls a*

apple

$ 1ls g*

grape grapefruit
S 1ls g*t

Chapter 4: Moving Around the Filesystem

grapefruit

S 1ls *e*

apple grape grapefruit watermelon
S 1ls *n*

banana watermelon

The first example matches any file that begins with an a (apple). The next example
matches any files that begin with g (grape, grapefruit). Next, files beginning with
g and ending in t are matched (grapefruit). Next, any file that contains an e in the
name is matched (apple, grape, grapefruit, watermelon). Finally, any file that
contains an n is matched (banana, watermelon).

Here are a few examples of pattern matching with the question mark (?):

$ 1s ??2%e
apple grape
$ 1ls g???e*
grape grapefruit

The first example matches any five-character file that ends in e (apple, grape). The
second matches any file that begins with g and has e as its fifth character (grape,
grapefruit).

The following examples use braces to do pattern matching:

S 1ls [abw]*

apple banana watermelon
S 1ls [agw] * [ne]

apple grape watermelon

In the first example, any file beginning with a, b, or w is matched. In the second, any
file that begins with a, g, or w and also ends with either n or e is matched. You can also
include ranges within brackets. For example:

$ 1s [a-gl*
apple banana grape grapefruit

Here, any filenames beginning with a letter from a through g are matched.

Using file-redirection metacharacters

Commands receive data from standard input and send it to standard output. Using pipes
(described earlier), you can direct standard output from one command to the standard
input of another. With files, you can use less than (<) and greater than (>) signs to direct
data to and from files. Here are the file-redirection characters:

B < — Directs the contents of a file to the command. In most cases, this is the
default action expected by the command and the use of the character is optional;
using less bigfile is the same as less < bigfile.

99

Part 1l: Becoming a Linux Power User

100

B > — Directs the standard output of a command to a file. If the file exists, the
content of that file is overwritten.

B 2> — Directs standard error (error messages) to the file.
&> — Directs both standard output and standard error to the file.

B >> — Directs the output of a command to a file, adding the output to the end of
the existing file.

The following are some examples of command lines where information is directed to and
from files:

$ mail root < ~/.bashrc
$ man chmod | col -b > /tmp/chmod
$ echo "I finished the project on $(date)" >> ~/projects

In the first example, the content of the .bashrc file in the home directory is sent in a
mail message to the computer’s root user. The second command line formats the chmod
man page (using the man command), removes extra back spaces (col -b), and sends the
output to the file /tmp/chmod (erasing the previous /tmp/chmod file, if it exists). The
final command results in the following text being added to the user’s project file:

I finished the project on Sat Jan 22 13:46:49 PST 2011

Another type of redirection, referred to as here text (also called here document), enables
you to type text that can be used as standard input for a command. Here documents
involve entering two less-than characters (<<) after a command, followed by a word. All
typing following that word is taken as user input until the word is repeated on a line by
itself. Here is an example:

S mail root cnegus rjones bdecker <<thetext

> I want to tell everyone that there will be a 10 a.m.
> meeting in conference room B. Everyone should attend.
>

> -- James

> thetext

$

This example sends a mail message to root, cnegus, rjones, and bdecker usernames. The
text entered between <<thetext and thetext becomes the content of the message.

A common use of here text is to use it with a text editor to create or add to a file from
within a script:

/bin/ed /etc/resolv.conf <<resendit
a
nameserver 100.100.100.100

w

q
resendit

Chapter 4: Moving Around the Filesystem

With these lines added to a script run by the root user, the ed text editor adds the IP
address of a DNS server to the /etc/resolv.conf file.

Using brace expansion characters

By using curly braces ({ }), you can expand out a set of characters across filenames,
directory names, or other arguments you give commands. For example, if you want to
create a set of files such as memol through memo5, you can do that as follows:

$ touch memo{1,2,3,4,5}
S 1ls
memol memo2 memo3 memo4 memo5

The items that are expanded don’t have to be number or even single digits. For example,
you could use ranges of numbers or digits. You could also use any string of characters,
as long as you separate them with commas. Here are some examples:

$ touch {John,Bill,Sally}-{Breakfast,Lunch,Dinner}

S 1s
Bill-Breakfast Bill-Lunch John-Dinner Sally-Breakfast Sally-Lunch
Bill-Dinner John-Breakfast John-Lunch Sally-Dinner

$ rm -f {John,Bill, Sally}-{Breakfast,Lunch,Dinner}

$ touch {a..f}{1..5}

S ls

al a3 a5 b2 b4 cl 3 c5 d2 d4 el e3 e5 f2 f4
a2 a4 bl b3 b5 c2 c4 dl d3 d5 e2 e4 f1 f£3 f£5

In the first example, the use of two sets of braces means John, Bill, and Sally each have
filenames associated with Breakfast, Lunch, and Dinner. If I had made a mistake, I could
easily recall the command and change touch to rm -f to delete all the files. In the next
example, the use of two dots between letters a and f and numbers 1 and 5 specifies the
ranges to be used. Notice the files that were created from those few characters.

Listing Files and Directories

The 1s command is the most common command used to list information about files and
directories. Many options available with the 1s command allow you to gather different
sets of files and directories, as well as to view different kinds of information about them.

By default, when you type the 1s command, the output shows you all non-hidden files
and directories contained in the current directory. When you type 1s, however, many
Linux systems (including Fedora and RHEL) assign an alias 1s to add options. To see if
1s is aliased, type the following:

$ alias 1s
alias ls='ls --color=auto'

101

Chapter 15. redirection and pipes

Table of Contents

15.1. stdin, StAOUt, and STAEIToooiieeeeee et e e e
15.2. OULPUL FEAITECTION ..veivieiiiiieiieee e e
15.3. rror reINECTIONc.ecieiiiie ettt
15.4. INPUL TEAITECTION ..eiviiiiiieiieie e
15.5. confuSINg redirECIONocveeiiiiieieiiee e
15.6. QUICK TIle CIEANovieieii e
15.7. swapping stdout and SEAEITcccecieiiiicie e
15,8, PIPES ettt bbbttt
15.9. practice: redirection and PIPEScoeeveiiiiieie e
15.10. solution: redirection and PIPEScccvervriierieiieereseerie e

One of the powers of the Unix command line is the use of redirection and pipes.

This chapter first explains redirection of input, output and error streams. It then

introduces pipes that consist of several commands.

110

redirection and pipes

15.1. stdin, stdout, and stderr

The shell (and almost every other Linux command) takes input from stdin (stream
0) and sends output to stdout (stream 1) and error messages to stderr (stream 2) .

The keyboard often server as stdin, stdout and stderr both go to the disply. The shell
allows you to redirect these streams.

15.2. output redirection

> stdout

stdout can be redirected with a greater than sign. While scanning the line, the shell
will see the > sign and will clear the file.

[paul@RHELv4u3 ~]$ echo It is cold today!

It is cold today!

[paul@RHELv4u3 ~]$ echo It is cold today! > winter.txt
[paul@RHELv4u3 ~]$ cat winter.txt

It is cold today!

[paul@RHELv4u3 ~]$

Note that the > notation is in fact the abbreviation of 1> (stdout being referred to
as stream 1.

output file is erased

To repeat: While scanning the line, the shell will see the > sign and will clear the
file! This means that even when the command fails, the file will be cleared!

[paul@RHELv4u3 ~]$ cat winter.txt

It is cold today!

[paul@RHELv4u3 ~]$ zcho It is cold today! > winter.txt
-bash: zcho: command not found

[paul@RHELv4u3 ~]$ cat winter.txt

[paul@RHELv4u3 ~]$

noclobber

Erasing a file while using > can be prevented by setting the noclobber option.

[paul@RHELv4u3 ~]$ cat winter.txt
It is cold today!
[paul@RHELv4u3 ~]$ set -o noclobber

111

redirection and pipes

[paul@RHELv4u3 ~]$ echo It is cold today! > winter.txt
-bash: winter.txt: cannot overwrite existing file
[paul@RHELv4u3 ~]$ set +o noclobber

[paul@RHELv4u3 ~]$

overruling noclobber

The noclobber can be overruled with >|.

[paul@RHELv4u3 ~]$ set -o noclobber

[paul@RHELv4u3 ~]$ echo It is cold today! > winter.txt
-bash: winter.txt: cannot overwrite existing file
[paul@RHELv4u3 ~]$ echo It is very cold today! >| winter.txt
[paul@RHELv4u3 ~]$ cat winter.txt

It is very cold today!

[paul@RHELv4u3 ~]$

>> append

Use >> to append output to a file.

[paul@RHELv4u3 ~]$ echo It is cold today! > winter.txt
[paul@RHELv4u3 ~]$ cat winter.txt

It is cold today!

[paul@RHELv4u3 ~]$ echo Where is the summer ? >> winter.txt
[paul@RHELv4u3 ~]$ cat winter.txt

It is cold today!
Where is the summer ?
[paul@RHELv4u3 ~]$

15.3. error redirection

2> stderr

Redirecting stderr is done with 2>. This can be very useful to prevent error messages
from cluttering your screen. The screenshot below shows redirection of stdout to a
file, and stderr to /dev/null. Writing 1> is the same as >.

[paul@RHELv4u3 ~]$ find / > allfiles.txt 2> /dev/null
[paul@RHELv4u3 ~]$

2>&1

To redirect both stdout and stderr to the same file, use 2>&1.

112

redirection and pipes

[paul@RHELv4u3 ~]$ find / > allfiles and errors.txt 2>&1
[paul@RHELv4u3 ~]$

Note that the order of redirections is significant. For example, the command

ls > dirlist 2>&1

directs both standard output (file descriptor 1) and standard error (file descriptor 2)
to the file dirlist, while the command

ls 2>&1 > dirlist

directs only the standard output to file dirlist, because the standard error was made a
copy of the standard output before the standard output was redirected to dirlist.

15.4. input redirection

< stdin

Redirecting stdin is done with < (short for 0<).

[paul@RHEL4b ~]$ cat < text.txt

one

two

[paul@RHEL4b ~]$ tr 'onetw' 'ONEZZ' < text.txt
ONE

ZZ0

[paul@RHEL4b ~]$

<< here document

The here document (sometimes called here-is-document) is a way to append input
until a certain sequence (usually EOF) is encountered. The EOF marker can be typed
literally or can be called with Ctrl-D.

[paul@RHEL4b ~]$ cat <<EOF > text.txt
> one

> two

> EOF

[paul@RHEL4b ~]$ cat text.txt

one

two

[paul@RHEL4b ~]$ cat <<brol > text.txt
> brel

> brol

[paul@RHEL4b ~]$ cat text.txt

brel

[paul@RHEL4b ~]$

113

redirection and pipes

15.5.

15.6.

15.7.

confusing redirection

The shell will scan the whole line before applying redirection. The following
command line is very readable and is correct.

cat winter.txt > snow.txt 2> errors.txt

But this one is also correct, but less readable.

2> errors.txt cat winter.txt > snow.txt

Even this will be understood perfectly by the shell.

< winter.txt > snow.txt 2> errors.txt cat

quick file clear

So what is the quickest way to clear a file ?

>foo

And what is the quickest way to clear a file when the noclobber option is set ?

>|bar

swapping stdout and stderr

When filtering an output stream, e.g. through a regular pipe (|) you only can filter
stdout. Say you want to filter out some unimportant error, out of the stderr stream.
This cannot be done directly, and you need to 'swap' stdout and stderr. This can be
done by using a 4th stream referred to with number 3:

3>&1 1>&2 2>&3

This Tower Of Hanoi like construction uses a temporary stream 3, to be able to swap
stdout (1) and stderr (2). The following is an example of how to filter out all lines
in the stderr stream, containing $uninterestingerror.

$command 3>&1 1>&2 2>&3 | grep -v $Serror 3>&1 1>&2 2>&3

But in this example, it can be done in a much shorter way, by using a pipe on
STDERR:

/usr/bin/$somecommand |& grep -v Suninterestingerror

114

redirection and pipes

15.8. pipes
One of the most powerful advantages of Linux is the use of pipes.

A pipe takes stdout from the previous command and sends it as stdin to the next
command. All commands in a pipe run simultaneously.

| vertical bar

Consider the following example.

paul@debian5:~/test$ 1ls /etc > etcfiles.txt
paul@debian5:~/test$ tail -4 etcfiles.txt
X11

xdg

xml

xpdf

paul@debian5:~/tests$

This can be written in one command line using a pipe.

paul@debian5:~/test$ 1ls /etc | tail -4
X11

xdg

xml

xpdf

paul@edebian5:~/tests

The pipe is represented by a vertical bar | between two commands.

multiple pipes

One command line can use multiple pipes. All commands in the pipe can run at the
same time.

paul@deb503:~/test$ 1ls /etc | tail -4 | tac
xpdf
xml
xdg
X11

115

Chapter 16. filters

Table of Contents

G300 - | SRR USSR 119
18.2. 1B ettt ettt et e ene s 119
TR T o] £ o TSP 119
TR o 1 | OSSR 120
1B, D. I s 121
18.6. WC ittt sttt sttt ettt n et ente et e eneeereenree s 122
16.7. SO .o 123
16.8. UNIQ 1ttt bbbt 123
16.9. COMM oo s 124
16.00. O oottt 125
16,10, SEU oottt r e 125
16.12. PIPE EXAMPIES ..o e 126
16.13. practice: TITErs ... 127
16.14. SOIULION: FIIEIS ..o.vieiiiii s 128

Commands that are created to be used with a pipe are often called filters. These
filters are very small programs that do one specific thing very efficiently. They can
be used as building blocks.

This chapter will introduce you to the most common filters. The combination of
simple commands and filters in a long pipe allows you to design elegant solutions.

118

filters

16.1.

16.2.

16.3.

cat

When between two pipes, the cat command does nothing (except putting stdin on
stdout.

[paul@RHEL4b pipes]$ tac count.txt | cat | cat | cat | cat | cat
five

four

three

two

one

[paul@RHEL4b pipes]$

tee

Writing long pipes in Unix is fun, but sometimes you might want intermediate results.
This is were tee comes in handy. The tee filter puts stdin on stdout and also into a
file. So tee is almost the same as cat, except that it has two identical outputs.

[paul@RHEL4b pipes]$ tac count.txt | tee temp.txt | tac
one

two

three

four

five

[paul@RHEL4b pipes]$ cat temp.txt
five

four

three

two

one

[paul@RHEL4b pipes]s$

grep

The grep filter is famous among Unix users. The most common use of grep is to
filter lines of text containing (or not containing) a certain string.

[paul@RHEL4b pipes]$ cat tennis.txt

Amelie Mauresmo, Fra

Kim Clijsters, BEL

Justine Henin, Bel

Serena Williams, usa

Venus Williams, USA

[paul@RHEL4b pipes]$ cat tennis.txt | grep Williams
Serena Williams, usa

Venus Williams, USA

You can write this without the cat.

[paul@RHEL4b pipes]$ grep Williams tennis.txt
Serena Williams, usa
Venus Williams, USA

One of the most useful options of grep is grep -i which filters in a case insensitive
way.

119

filters

16.4.

[paul@RHEL4b pipes]$ grep Bel tennis.txt
Justine Henin, Bel

[paul@RHEL4b pipes]$ grep -i Bel tennis.txt
Kim Clijsters, BEL

Justine Henin, Bel

[paul@RHEL4b pipes]$

Another very useful option is grep -v which outputs lines not matching the string.

[paul@RHEL4b pipes]$ grep -v Fra tennis.txt
Kim Clijsters, BEL

Justine Henin, Bel

Serena Williams, usa

Venus Williams, USA

[paul@RHEL4b pipes]s$

And of course, both options can be combined to filter all lines not containing a case
insensitive string.

[paul@RHEL4b pipes]$ grep -vi usa tennis.txt
Amelie Mauresmo, Fra

Kim Clijsters, BEL

Justine Henin, Bel

[paul@RHEL4b pipes]$

With grep -Al one line after the result is also displayed.

paul@debian5:~/pipes$ grep -Al Henin tennis.txt
Justine Henin, Bel
Serena Williams, usa

With grep -B1 one line before the result is also displayed.

paul@debian5:~/pipes$ grep -Bl Henin tennis.txt
Kim Clijsters, BEL
Justine Henin, Bel

With grep -C1 (context) one line before and one after are also displayed. All three
options (A,B, and C) can display any number of lines (using e.g. A2, B4 or C20).

paul@debian5:~/pipes$ grep -Cl Henin tennis.txt
Kim Clijsters, BEL

Justine Henin, Bel

Serena Williams, usa

cut

The cut filter can select columns from files, depending on a delimiter or a count of
bytes. The screenshot below uses cut to filter for the username and userid in the /etc/
passwd file. It uses the colon as a delimiter, and selects fields 1 and 3.

120

filters

16.5.

[[paul@RHEL4b pipes]$ cut -d: -£f1,3 /etc/passwd | tail -4
Figo:510

Pfaff:511

Harry:516

Hermione:517

[paul@RHEL4b pipes]$

When using a space as the delimiter for cut, you have to quote the space.

[paul@RHEL4b pipes]$ cut -d" " -f1 tennis.txt
Amelie

Kim

Justine

Serena

Venus

[paul@RHEL4b pipes]$

This example uses cut to display the second to the seventh character of /etc/passwd.

[paul@RHEL4b pipes]$ cut -c2-7 /etc/passwd | tail -4
igo:x:

faff:x

arry:x

ermion

[paul@RHEL4b pipes]$

tr

You can translate characters with tr. The screenshot shows the translation of all
occurrences of e to E.

[paul@RHEL4b pipes]$ cat tennis.txt | tr 'e' 'E'
AmEliE MaurEsmo, Fra

Kim ClijstErs, BEL

JustinE HEnin, BEl

SErEna Williams, usa

VEnus Williams, USA

Here we set all letters to uppercase by defining two ranges.

[paul@RHEL4b pipes]$ cat tennis.txt | tr 'a-z' 'A-Z'
AMELIE MAURESMO, FRA

KIM CLIJSTERS, BEL

JUSTINE HENIN, BEL

SERENA WILLIAMS, USA

VENUS WILLIAMS, USA

[paul@RHEL4b pipes]$

Here we translate all newlines to spaces.

[paul@RHEL4b pipes]$ cat count.txt
one

121

filters

16.6.

two

three

four

five

[paul@RHEL4b pipes]$ cat count.txt | tr '\n' ' '
one two three four five [paul@RHEL4b pipes]$

The tr -s filter can also be used to squeeze multiple occurrences of a character to one.

[paul@RHEL4b pipes]$ cat spaces.txt
one two three
four five six
[paul@RHEL4b pipes]$ cat spaces.txt | tr -s ' !
one two three
four five six
[paul@RHEL4b pipes]$

You can also use tr to 'encrypt' texts with rot13.

[paul@RHEL4b pipes]$ cat count.txt | tr 'a-z' 'nopgrstuvwxyzabcdefghijklm!'
bar

gjb

guerr

sbhe

svir

[paul@RHEL4b pipes]$ cat count.txt | tr 'a-z' 'n-za-m'
bar

gjb

guerr

sbhe

svir

[paul@RHEL4b pipes]$

This last example uses tr -d to delete characters.

pauledebian5:~/pipes$ cat tennis.txt | tr -d e
Amli Maursmo, Fra

Kim Clijstrs, BEL

Justin Hnin, Bl

Srna Williams, usa

Vnus Williams, USA

WC

Counting words, lines and characters is easy with wc.

[paul@RHEL4b pipes]$ wc tennis.txt

5 15 100 tennis.txt
[paul@RHEL4b pipes]$ wc -1 tennis.txt
5 tennis.txt
[paul@RHEL4b pipes]$ wc -w tennis.txt
15 tennis.txt
[paul@RHEL4b pipes]$ wc -c tennis.txt
100 tennis.txt

122

filters

[paul@RHEL4b pipes]$

16.7. sort

The sort filter will default to an alphabetical sort.

paul@debian5:~/pipes$ cat music.txt
Queen

Brel

Led Zeppelin

Abba

paul@edebian5:~/pipes$ sort music.txt
Abba

Brel

Led Zeppelin

Queen

But the sort filter has many options to tweak its usage. This example shows sorting
different columns (column 1 or column 2).

[paul@RHEL4b pipes]$ sort -kl country.txt
Belgium, Brussels, 10

France, Paris, 60

Germany, Berlin, 100

Iran, Teheran, 70

Italy, Rome, 50

[paul@RHEL4b pipes]$ sort -k2 country.txt
Germany, Berlin, 100

Belgium, Brussels, 10

France, Paris, 60

Italy, Rome, 50

Iran, Teheran, 70

The screenshot below shows the difference between an alphabetical sort and a
numerical sort (both on the third column).

[paul@RHEL4b pipes]$ sort -k3 country.txt
Belgium, Brussels, 10

Germany, Berlin, 100

Italy, Rome, 50

France, Paris, 60

Iran, Teheran, 70

[paul@RHEL4b pipes]$ sort -n -k3 country.txt
Belgium, Brussels, 10

Italy, Rome, 50

France, Paris, 60

Iran, Teheran, 70

Germany, Berlin, 100

16.8. uniq

With unig you can remove duplicates from a sorted list.

123

filters

16.9.

paul@debian5:~/pipes$ cat music.txt
Queen

Brel

Queen

Abba

paul@debian5:~/pipes$ sort music.txt
Abba

Brel

Queen

Queen

pauledebian5:~/pipes$ sort music.txt |unig
Abba

Brel

Queen

unig can also count occurrences with the -c option.

paul@debian5:~/pipes$ sort music.txt |unig -c¢
1 Abba
1 Brel
2 Queen

comm

Comparing streams (or files) can be done with the comm. By default comm will
output three columns. In this example, Abba, Cure and Queen are in both lists, Bowie
and Sweet are only in the first file, Turner is only in the second.

paul@debian5:~/pipes$ cat > listl.txt
Abba
Bowie
Cure
Queen
Sweet
paul@debian5:~/pipes$ cat > list2.txt
Abba
Cure
Queen
Turner
paul@debian5:~/pipes$ comm listl.txt list2.txt
Abba
Bowie
Cure
Queen
Sweet
Turner

The output of comm can be easier to read when outputting only a single column. The
digits point out which output columns should not be displayed.

paul@edebian5:~/pipes$ comm -12 listl.txt list2.txt
Abba

Cure

Queen

paul@debian5:~/pipes$ comm -13 listl.txt list2.txt
Turner

paul@debian5:~/pipes$ comm -23 listl.txt list2.txt

124

basic unix tools

17.1.

17.2.

find

The find command can be very useful at the start of a pipe to search for files. Here are
some examples. You might want to add 2>/dev/null to the command lines to avoid
cluttering your screen with error messages.

Find all files in /etc and put the list in etcfiles.txt

find /etc > etcfiles.txt

Find all files of the entire system and put the list in allfiles.txt

find / > allfiles.txt

Find files that end in .conf in the current directory (and all subdirs).

find . -name "*.conf"

Find files of type file (not directory, pipe or etc.) that end in .conf.

find . -type £ -name "*.conf"

Find files of type directory that end in .bak .

find /data -type d -name "*.bak"

Find files that are newer than file42.txt

find . -newer file42.txt

Find can also execute another command on every file found. This example will look
for *.odf files and copy them to /backup/.

find /data -name "*.odf" -exec cp {} /backup/ \;

Find can also execute, after your confirmation, another command on every file found.
This example will remove *.odf files if you approve of it for every file found.

find /data -name "*.odf" -ok rm {} \;

locate

The locate tool is very different from find in that it uses an index to locate files. This
is a lot faster than traversing all the directories, but it also means that it is always
outdated. If the index does not exist yet, then you have to create it (as root on Red
Hat Enterprise Linux) with the updatedb command.

[paul@RHEL4b ~]$ locate Samba

warning: locate: could not open database: /var/lib/slocate/slocate.db:...
warning: You need to run the 'updatedb' command (as root) to create th...
Please have a look at /etc/updatedb.conf to enable the daily cron job.
[paul@RHEL4b ~]$ updatedb

fatal error: updatedb: You are not authorized to create a default sloc...
[paul@RHEL4b ~]$ su -

Password:

131

basic unix tools

[root@RHEL4b ~]# updatedb
[root@RHEL4b ~]1#

Most Linux distributions will schedule the updatedb to run once every day.

17.3. date

The date command can display the date, time, timezone and more.

paul@rhel55 ~$ date
Sat Apr 17 12:44:30 CEST 2010

A date string can be customized to display the format of your choice. Check the man
page for more options.

paul@rhel55 ~$ date +'$A $d-%m-%Y'
Saturday 17-04-2010

Time on any Unix is calculated in number of seconds since 1969 (the first second
being the first second of the first of January 1970). Use date +%bs to display Unix
time in seconds.

paul@rhel55 ~$ date +%s
1271501080

When will this seconds counter reach two thousand million ?

paul@rhel55 ~$ date -d '1970-01-01 + 2000000000 seconds'
Wed May 18 04:33:20 CEST 2033

17.4. cal

The cal command displays the current month, with the current day highlighted.

paul@rhel55 ~$ cal
April 2010
Su Mo Tu We Th Fr Sa
1 2 3
4 5 6 7 8 910
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30

You can select any month in the past or the future.

paul@rhel55 ~$ cal 2 1970
February 1970
Su Mo Tu We Th Fr Sa
1 2 3 4 5 6 7

132

basic unix tools

17.5.

17.6.

17.7

8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28

sleep

The sleep command is sometimes used in scripts to wait a number of seconds. This
example shows a five second sleep.

paul@rhel55 ~$ sleep 5
paul@rhel55 ~$

time

The time command can display how long it takes to execute a command. The date
command takes only a little time.

paul@rhel55 ~$ time date
Sat Apr 17 13:08:27 CEST 2010

real 0m0.014s
user 0m0.008s
sys Om0.006s

The sleep 5 command takes five real seconds to execute, but consumes little cpu
time.

paul@rhel55 ~$ time sleep 5

real 0m5.018s
user 0m0.005s
sys Om0.011s

This bzip2 command compresses a file and uses a lot of cpu time.

paul@rhel55 ~$ time bzip2 text.txt

real 0m2.368s
user 0m0.847s
sys 0m0.539s

gzip - gunzip

Users never have enough disk space, so compression comes in handy. The gzip
command can make files take up less space.

133

The Linux Command Line & Shell Scripting Bible 2™ Edition

Compressing Data

If you've done any work in the Microsoft Windows world, no doubt you've used zip files.
It became such a popular feature that Microsoft eventually incorporated it into the
Windows XP operating system. The zip utility allows you to easily compress large files
(both text and executable) into smaller files that take up less space.

Linux contains several file compression utilities. While this may sound great, it often
leads to confusion and chaos when trying to download files. Table 4.8 lists the file
compression utilities available for Linux.

Table 4.8 Linux File Compression Utilities

‘Utility HFile Extension HDescription ‘
bzip2 bz2 I:Josg:isntghe Burrows-Wheeler block sorting text compression algorithm and Huffman

‘C ompress H Z HOriginal Unix file compression utility; starting to fade away into obscurity ‘
\gzip H .9z HThe GNU Project's compression utility; uses Lempel-Ziv coding ‘
‘Zip H .zip HThe Unix version of the PKZIP program for Windows ‘

The compress file compression utility is not often found on Linux systems. If you
download a file with a .Zextension, you can usually install the compress package
(called ncompress in many Linux distributions) using the software installation methods
discussed in Chapter 8, and then uncompress the file with the uncompress command.

The bzip2 Utility

The bzip2 utility is a relatively new compression package that is gaining popularity,
especially when compressing large binary files. The utilities in the bzip2 package are:

* bzip2 for compressing files

» bzcat for displaying the contents of compressed text files

* bunzip2 for uncompressing compressed .bz2 files

* bzip2recover for attempting to recover damaged compressed files

By default, the bzip2 command attempts to compress the original file and replaces it
with the compressed file, using the same file name with a .bz2 extension:

$ 1s -1 myprog

-rwxrwxr-x 1 rich rich 4882 2007-09-13 11:29 myprog

$ bzip2 myprog

$ s -1 my*

-rwxrwxr-x 1 rich rich 2378 2007-09-13 11:29 myprog.bz2

$

The original size of themyprogprogram was 4882 bytes, and after
the bzip2 compression it is now 2378 bytes. Also, notice that the bzip2 command
automatically renamed the original file with the .bz2 extension, indicating what
compression technique we used to compress it.

127

The Linux Command Line & Shell Scripting Bible 2™ Edition

To uncompress the file, just use the bunzip2 command:
$ bunzip2 myprog.bz2

$ s -1 myprog

-rwxrwxr-x 1 rich rich 4882 2007-09-13 11:29 myprog

$

As you can see, the uncompressed file is back to the original file size. Once you
compress a text file, you can't use the standard cat, more, or less commands to view
the data. Instead, you need to use the bzcat command:

$ bzcat test.bz2

This is a test text file.

The quick brown fox jumps over the lazy dog.
This is the end of the test text file.

$

The bzcat command displays the text inside the compressed file without
uncompressing the actual file.

The gzip Utility

By far the most popular file compression utility in Linux is the gzip utility.
The gzip package is a creation of the GNU Project, in their attempt to create a free
version of the original Unix compress utility. This package includes the files:

» gzip for compressing files
» gzcat for displaying the contents of compressed text files
* gunzip for uncompressing files

These utilities work the same way as the bzip2 utilities:

$ gzip myprog
$ ls -1 my*
-rwxrwxr-x 1 rich rich 2197 2007-09-13 11:29 myprog.gz

$

The gzip command compresses the file you specify on the command line. You can
also specify more than one file name or even use wildcard characters to compress
multiple files at once:

$ gzip my*

$ s -1 my*

-rwxXr--r-- 1 rich rich 103 Sep 6 13:43 myprog.c.gz

- rWXr-Xr-x 1 rich rich 5178 Sep 6 13:43 myprog.gz
-rwWXr--r-- 1 rich rich 59 Sep 6 13:46 myscript.gz
-rWXr--r-- 1 rich rich 60 Sep 6 13:44 myscriptll.gz

128

The Linux Command Line & Shell Scripting Bible 2™ Edition

$

The gzip command compresses every file in the directory that matches the wildcard
pattern.

The zip Utility
The zip utility is compatible with the popular PKZIP package created by Phil Katz for
MS-DOS and Windows. There are four utilities in the Linux zip package:

» z1ip creates a compressed file containing listed files and directories.

» zipcloak creates an encrypted compress file containing listed files and
directories.

+ zipnote extracts the comments from a zip file.

« zipsplit splits a zip file into smaller files of a set size (used for copying large
zip files to floppy disks).

* unzip extracts files and directories from a compressed zip file.

To see all of the options available for the zip utility, just enter it by itself on the
command line:

$ zip
Copyright (C) 1990-2005 Info-ZIP

Type ‘zip “-L"' for software license.

Zip 2.31 (March 8th 2005). Usage:

zip [-options] [-b path] [-t mmddyyyy]l [-n suffixes] [zipfile list]
[-xi list]

The default action is to add or replace zipfile entries from list,
which can include the special name - to compress standard input.

If zipfile and list are omitted, zip compresses stdin to stdout.

-f freshen: only changed files -u update: only changed or new files

-d delete entries in zipfile -m move into zipfile (delete files)
-r recurse into directories -j junk directory names

-0 store only -1 convert LF to CR LF

-1 compress faster -9 compress better

-g quiet operation -v verbose operation

-C add one-line comments -z add zipfile comment

-@ read names from stdin -0 make file as old as latest entry

-x exclude the following names -i include only the following names

-F fix zipfile (-FF try harder) -D do not add directory entries

129

The Linux Command Line & Shell Scripting Bible 2™ Edition

-A adjust self-extracting exe -J junk zipfile prefix (unzipsfx)
-T test zipfile integrity -X eXclude eXtra file attributes
-y store symbolic links as the link instead of the referenced file
-R PKZIP recursion (see manual)

-e encrypt -n don't compress these suffixes

$

The power of the zip utility is its ability to compress entire directories of files into a
single compressed file. This makes it ideal for archiving entire directory structures:

$ zip -r testzip test

adding: test/ (stored 0%)

adding: test/testl/ (stored 0%)
adding: test/testl/myprog2 (stored 0%)
adding: test/testl/myprogl (stored 0%)
adding: test/myprog.c (deflated 39%)
adding: test/file3 (deflated 2%)
adding: test/file4 (stored 0%)

adding: test/test2/ (stored 0%)
adding: test/filel.gz (stored 0%)
adding: test/file2 (deflated 4%)
adding: test/myprog.gz (stored 0%)

$

This example creates the zip file named testzip.zip and recurses through the
directory test, adding each file and directory found to the zip file. Notice from the
output that not all of the files stored in the zip file could be compressed. The zip utility
automatically determines the best compression type to use for each individual file.

Caution

When you use the recursion feature in the zip command, files are stored in the same directory
structure in the zip file. Files contained in subdirectories are stored in the zip file within the same
subdirectories. You must be careful when extracting the files; the unzip command will rebuild the
entire directory structure in the new location. Sometimes this gets confusing when you have lots of
subdirectories and files.

Archiving Data

While the zip command works great for compressing and archiving data into a single
file, it's not the standard utility used in the Unix and Linux worlds. By far the most
popular archiving tool used in Unix and Linux is the tarcommand.

130

The Linux Command Line & Shell Scripting Bible 2™ Edition

The tar command was originally used to write files to a tape device for archiving.
However, it can also write the output to a file, which has become a popular way to
archive data in Linux.

The following is the format of the tar command:

tar function [options] objectl object2 ..

The function parameter defines what the tar command should do, as shown in Table
4.9.

Table 4.9 The tar Command Functions

‘Function ‘ Long Name HDescription ‘
-A --concatenate HAppend an existing tar archive file to another existing tar archive file. ‘
-C --Create HCreate a new tar archive file. ‘
-d --diff HCheck the differences between a tar archive file and the filesystem. ‘
‘ --delete HDelete from an existing tar archive file. ‘
-r --append HAppend files to the end of an existing tar archive file. ‘
-t --list HList the contents of an existing tar archive file. ‘
-u --update Appegd files to an existiqg tar archive file that are newer than a file with the same
name in the existing archive.
-X --extract HExtract files from an existing archive file. ‘

Each function uses options to define a specific behavior for the tar archive file. Table
4.10 lists the common options that you can use with the tar command.

Table 4.10 The tar Command Options

‘Option ‘ ’Description

-C dir HChange to the specified directory.

-f file HOutput results to file (or device) file.

|
|
|
-j HRedirect output to the bzip2 command for compression. ‘
|
|
|

-p HPreserve all file permissions.
-V HList files as they are processed.
-z HRedirect the output to the gzip command for compression.

These options are usually combined to create the following scenarios. First, you'll want
to create an archive file using this command:

tar -cvf test.tar test/ test2/

The above command creates an archive file called test.tar containing the contents
of both the test directory and the test2 directory. Next, this command:

tar -tf test.tar
lists (but doesn't extract) the contents of the tar file test.tar. Finally, this command:
tar -xvf test.tar

extracts the contents of the tar file test.tar. If the tar file was created from a
directory structure, the entire directory structure is re-created starting at the current
directory.

131

The Linux Command Line & Shell Scripting Bible 2™ Edition

As you can see, using the tar command is a simple way to create archive files of
entire directory structures. This is a common method for distributing source code files
for open source applications in the Linux world.

Tip
If you download open source software, often you'll see filenames that end in .tgz. These are
gzipped tar files, and can be extracted using the command tar -zxvf filename.tgz.

Summary

This chapter discussed some of the more advanced bash commands used by Linux
system administrators and programmers. The ps and top commands are vital in
determining the status of the system, allowing you to see what applications are running
and how many resources they are consuming.

In this day of removable media, another popular topic for system administrators is
mounting storage devices. Themount command allows you to mount a physical storage
device into the Linux virtual directory structure. To remove the device, use
the umount command.

Finally, the chapter discussed various utilities used for handling data. The sort utility
easily sorts large data files to help you organize data, and the grep utility allows you to
quickly scan through large data files looking for specific information. There are a few
different file compression utilities available in Linux, including bzip2,gzip, and zip.
Each one allows you to compress large files to help save space on your filesystem. The
Linux tarutility is a popular way to archive directory structures into a single file that can
easily be ported to another system.

The next chapter discusses Linux environment variables. Environment variables allow
you to access information about the system from your scripts, as well as provide a
convenient way to store data within your scripts.

132

	1_cas_linux
	1_cas_osnovne_komande
	1_cas_file_globing_and_redirection
	1_cas_pipes_filters
	1_cas_compress

