

98

Part II: Becoming a Linux Power User

This step changes the permissions of the directory to give you complete access

and everyone else no access at all. (The new permissions should read rwx------.)

 5. Make the test directory your current directory as follows:

$ cd test
$ pwd
/home/joe/test

If you followed along, at this point a subdirectory of your home directory called test is

your current working directory. You can create fi les and directories in the test directory
along with the descriptions in the rest of this chapter.

Using Metacharacters and Operators
Whether you are listing, moving, copying, removing, or otherwise acting on fi les in
your Linux system, certain special characters, referred to as metacharacters and opera-
tors, help you to work with fi les more effi ciently. Metacharacters can help you match one
or more fi les without completely typing each fi le name. Operators enable you to direct
information from one command or fi le to another command or fi le.

Using fi le-matching metacharacters
To save you some keystrokes and to enable you to refer easily to a group of fi les, the
bash shell lets you use metacharacters. Any time you need to refer to a fi le or directory,
such as to list it, open it, or remove it, you can use metacharacters to match the fi les you
want. Here are some useful metacharacters for matching fi lenames:

 ■ * — Matches any number of characters.

 ■ ? — Matches any one character.

 ■ [...] — Matches any one of the characters between the brackets, which can
include a hyphen-separated range of letters or numbers.

Try out some of these fi le-matching metacharacters by fi rst going to an empty directory (such

as the test directory described in the previous section) and creating some empty fi les:

$ touch apple banana grape grapefruit watermelon

The touch command creates empty fi les. The commands that follow show you how to

use shell metacharacters with the ls command to match fi lenames. Try the following
commands to see whether you get the same responses:

$ ls a*
apple
$ ls g*
grape grapefruit
$ ls g*t

c04.indd 98 8/27/2012 11:10:58 AM

99

Chapter 4: Moving Around the Filesystem

4

grapefruit
$ ls *e*
apple grape grapefruit watermelon
$ ls *n*
banana watermelon

The fi rst example matches any fi le that begins with an a (apple). The next example

matches any fi les that begin with g (grape, grapefruit). Next, fi les beginning with

g and ending in t are matched (grapefruit). Next, any fi le that contains an e in the

name is matched (apple, grape, grapefruit, watermelon). Finally, any fi le that

contains an n is matched (banana, watermelon).

Here are a few examples of pattern matching with the question mark (?):

$ ls ????e
apple grape
$ ls g???e*
grape grapefruit

The fi rst example matches any fi ve-character fi le that ends in e (apple, grape). The

second matches any fi le that begins with g and has e as its fi fth character (grape,

grapefruit).

The following examples use braces to do pattern matching:

$ ls [abw]*
apple banana watermelon
$ ls [agw]*[ne]
apple grape watermelon

In the fi rst example, any fi le beginning with a, b, or w is matched. In the second, any

fi le that begins with a, g, or w and also ends with either n or e is matched. You can also
include ranges within brackets. For example:

$ ls [a-g]*
apple banana grape grapefruit

Here, any fi lenames beginning with a letter from a through g are matched.

Using fi le-redirection metacharacters
Commands receive data from standard input and send it to standard output. Using pipes
(described earlier), you can direct standard output from one command to the standard

input of another. With fi les, you can use less than (<) and greater than (>) signs to direct
data to and from fi les. Here are the fi le-redirection characters:

 ■ < — Directs the contents of a fi le to the command. In most cases, this is the
default action expected by the command and the use of the character is optional;

using less bigfile is the same as less < bigfile.

c04.indd 99 8/27/2012 11:10:58 AM

100

Part II: Becoming a Linux Power User

 ■ > — Directs the standard output of a command to a fi le. If the fi le exists, the
content of that fi le is overwritten.

 ■ 2> — Directs standard error (error messages) to the fi le.

 ■ &> — Directs both standard output and standard error to the fi le.

 ■ >> — Directs the output of a command to a fi le, adding the output to the end of
the existing fi le.

The following are some examples of command lines where information is directed to and
from fi les:

$ mail root < ~/.bashrc
$ man chmod | col -b > /tmp/chmod
$ echo "I finished the project on $(date)" >> ~/projects

In the fi rst example, the content of the .bashrc fi le in the home directory is sent in a

mail message to the computer’s root user. The second command line formats the chmod

man page (using the man command), removes extra back spaces (col -b), and sends the

output to the fi le /tmp/chmod (erasing the previous /tmp/chmod fi le, if it exists). The
fi nal command results in the following text being added to the user’s project fi le:

I finished the project on Sat Jan 22 13:46:49 PST 2011

Another type of redirection, referred to as here text (also called here document), enables
you to type text that can be used as standard input for a command. Here documents

involve entering two less-than characters (<<) after a command, followed by a word. All
typing following that word is taken as user input until the word is repeated on a line by
itself. Here is an example:

$ mail root cnegus rjones bdecker <<thetext
> I want to tell everyone that there will be a 10 a.m.
> meeting in conference room B. Everyone should attend.
>
> -- James
> thetext
$

This example sends a mail message to root, cnegus, rjones, and bdecker usernames. The

text entered between <<thetext and thetext becomes the content of the message.
A common use of here text is to use it with a text editor to create or add to a fi le from
within a script:

/bin/ed /etc/resolv.conf <<resendit
a
nameserver 100.100.100.100
.
w
q
resendit

c04.indd 100 8/27/2012 11:10:58 AM

101

Chapter 4: Moving Around the Filesystem

4

With these lines added to a script run by the root user, the ed text editor adds the IP

address of a DNS server to the /etc/resolv.conf fi le.

Using brace expansion characters
By using curly braces ({}), you can expand out a set of characters across fi lenames,
directory names, or other arguments you give commands. For example, if you want to
create a set of fi les such as memo1 through memo5, you can do that as follows:

$ touch memo{1,2,3,4,5}
$ ls
memo1 memo2 memo3 memo4 memo5

The items that are expanded don’t have to be number or even single digits. For example,
you could use ranges of numbers or digits. You could also use any string of characters,
as long as you separate them with commas. Here are some examples:

$ touch {John,Bill,Sally}-{Breakfast,Lunch,Dinner}
$ ls
Bill-Breakfast Bill-Lunch John-Dinner Sally-Breakfast Sally-Lunch
Bill-Dinner John-Breakfast John-Lunch Sally-Dinner
$ rm -f {John,Bill,Sally}-{Breakfast,Lunch,Dinner}
$ touch {a..f}{1..5}
$ ls
a1 a3 a5 b2 b4 c1 c3 c5 d2 d4 e1 e3 e5 f2 f4
a2 a4 b1 b3 b5 c2 c4 d1 d3 d5 e2 e4 f1 f3 f5

In the fi rst example, the use of two sets of braces means John, Bill, and Sally each have
fi lenames associated with Breakfast, Lunch, and Dinner. If I had made a mistake, I could

easily recall the command and change touch to rm -f to delete all the fi les. In the next
example, the use of two dots between letters a and f and numbers 1 and 5 specifi es the
ranges to be used. Notice the fi les that were created from those few characters.

Listing Files and Directories
The ls command is the most common command used to list information about fi les and

directories. Many options available with the ls command allow you to gather different
sets of fi les and directories, as well as to view different kinds of information about them.

By default, when you type the ls command, the output shows you all non-hidden fi les

and directories contained in the current directory. When you type ls, however, many
Linux systems (including Fedora and RHEL) assign an alias ls to add options. To see if

ls is aliased, type the following:

$ alias ls
alias ls='ls --color=auto'

c04.indd 101 8/27/2012 11:10:58 AM

110

Chapter 15. redirection and pipes

Table of Contents
15.1. stdin, stdout, and stderr .. 111
15.2. output redirection ... 111
15.3. error redirection ... 112
15.4. input redirection ... 113
15.5. confusing redirection .. 114
15.6. quick file clear ... 114
15.7. swapping stdout and stderr .. 114
15.8. pipes ... 115
15.9. practice: redirection and pipes ... 116
15.10. solution: redirection and pipes ... 117

One of the powers of the Unix command line is the use of redirection and pipes.

This chapter first explains redirection of input, output and error streams. It then
introduces pipes that consist of several commands.

redirection and pipes

111

15.1. stdin, stdout, and stderr
The shell (and almost every other Linux command) takes input from stdin (stream
0) and sends output to stdout (stream 1) and error messages to stderr (stream 2) .

The keyboard often server as stdin, stdout and stderr both go to the disply. The shell
allows you to redirect these streams.

15.2. output redirection

> stdout
stdout can be redirected with a greater than sign. While scanning the line, the shell
will see the > sign and will clear the file.

[paul@RHELv4u3 ~]$ echo It is cold today!
It is cold today!
[paul@RHELv4u3 ~]$ echo It is cold today! > winter.txt
[paul@RHELv4u3 ~]$ cat winter.txt
It is cold today!
[paul@RHELv4u3 ~]$

Note that the > notation is in fact the abbreviation of 1> (stdout being referred to
as stream 1.

output file is erased
To repeat: While scanning the line, the shell will see the > sign and will clear the
file! This means that even when the command fails, the file will be cleared!

[paul@RHELv4u3 ~]$ cat winter.txt
It is cold today!
[paul@RHELv4u3 ~]$ zcho It is cold today! > winter.txt
-bash: zcho: command not found
[paul@RHELv4u3 ~]$ cat winter.txt
[paul@RHELv4u3 ~]$

noclobber
Erasing a file while using > can be prevented by setting the noclobber option.

[paul@RHELv4u3 ~]$ cat winter.txt
It is cold today!
[paul@RHELv4u3 ~]$ set -o noclobber

redirection and pipes

112

[paul@RHELv4u3 ~]$ echo It is cold today! > winter.txt
-bash: winter.txt: cannot overwrite existing file
[paul@RHELv4u3 ~]$ set +o noclobber
[paul@RHELv4u3 ~]$

overruling noclobber
The noclobber can be overruled with >|.

[paul@RHELv4u3 ~]$ set -o noclobber
[paul@RHELv4u3 ~]$ echo It is cold today! > winter.txt
-bash: winter.txt: cannot overwrite existing file
[paul@RHELv4u3 ~]$ echo It is very cold today! >| winter.txt
[paul@RHELv4u3 ~]$ cat winter.txt
It is very cold today!
[paul@RHELv4u3 ~]$

>> append
Use >> to append output to a file.

[paul@RHELv4u3 ~]$ echo It is cold today! > winter.txt
[paul@RHELv4u3 ~]$ cat winter.txt
It is cold today!
[paul@RHELv4u3 ~]$ echo Where is the summer ? >> winter.txt
[paul@RHELv4u3 ~]$ cat winter.txt
It is cold today!
Where is the summer ?
[paul@RHELv4u3 ~]$

15.3. error redirection

2> stderr
Redirecting stderr is done with 2>. This can be very useful to prevent error messages
from cluttering your screen. The screenshot below shows redirection of stdout to a
file, and stderr to /dev/null. Writing 1> is the same as >.

[paul@RHELv4u3 ~]$ find / > allfiles.txt 2> /dev/null
[paul@RHELv4u3 ~]$

2>&1
To redirect both stdout and stderr to the same file, use 2>&1.

redirection and pipes

113

[paul@RHELv4u3 ~]$ find / > allfiles_and_errors.txt 2>&1
[paul@RHELv4u3 ~]$

Note that the order of redirections is significant. For example, the command

ls > dirlist 2>&1

directs both standard output (file descriptor 1) and standard error (file descriptor 2)
to the file dirlist, while the command

ls 2>&1 > dirlist

directs only the standard output to file dirlist, because the standard error was made a
copy of the standard output before the standard output was redirected to dirlist.

15.4. input redirection

< stdin
Redirecting stdin is done with < (short for 0<).

[paul@RHEL4b ~]$ cat < text.txt
one
two
[paul@RHEL4b ~]$ tr 'onetw' 'ONEZZ' < text.txt
ONE
ZZO
[paul@RHEL4b ~]$

<< here document
The here document (sometimes called here-is-document) is a way to append input
until a certain sequence (usually EOF) is encountered. The EOF marker can be typed
literally or can be called with Ctrl-D.

[paul@RHEL4b ~]$ cat <<EOF > text.txt
> one
> two
> EOF
[paul@RHEL4b ~]$ cat text.txt
one
two
[paul@RHEL4b ~]$ cat <<brol > text.txt
> brel
> brol
[paul@RHEL4b ~]$ cat text.txt
brel
[paul@RHEL4b ~]$

redirection and pipes

114

15.5. confusing redirection
The shell will scan the whole line before applying redirection. The following
command line is very readable and is correct.

cat winter.txt > snow.txt 2> errors.txt

But this one is also correct, but less readable.

2> errors.txt cat winter.txt > snow.txt

Even this will be understood perfectly by the shell.

< winter.txt > snow.txt 2> errors.txt cat

15.6. quick file clear
So what is the quickest way to clear a file ?

>foo

And what is the quickest way to clear a file when the noclobber option is set ?

>|bar

15.7. swapping stdout and stderr
When filtering an output stream, e.g. through a regular pipe (|) you only can filter
stdout. Say you want to filter out some unimportant error, out of the stderr stream.
This cannot be done directly, and you need to 'swap' stdout and stderr. This can be
done by using a 4th stream referred to with number 3:

3>&1 1>&2 2>&3

This Tower Of Hanoi like construction uses a temporary stream 3, to be able to swap
stdout (1) and stderr (2). The following is an example of how to filter out all lines
in the stderr stream, containing $uninterestingerror.

$command 3>&1 1>&2 2>&3 | grep -v $error 3>&1 1>&2 2>&3

But in this example, it can be done in a much shorter way, by using a pipe on
STDERR:

/usr/bin/$somecommand |& grep -v $uninterestingerror

redirection and pipes

115

15.8. pipes
One of the most powerful advantages of Linux is the use of pipes.

A pipe takes stdout from the previous command and sends it as stdin to the next
command. All commands in a pipe run simultaneously.

| vertical bar
Consider the following example.

paul@debian5:~/test$ ls /etc > etcfiles.txt
paul@debian5:~/test$ tail -4 etcfiles.txt
X11
xdg
xml
xpdf
paul@debian5:~/test$

This can be written in one command line using a pipe.

paul@debian5:~/test$ ls /etc | tail -4
X11
xdg
xml
xpdf
paul@debian5:~/test$

The pipe is represented by a vertical bar | between two commands.

multiple pipes
One command line can use multiple pipes. All commands in the pipe can run at the
same time.

paul@deb503:~/test$ ls /etc | tail -4 | tac
xpdf
xml
xdg
X11

118

Chapter 16. filters

Table of Contents
16.1. cat ... 119
16.2. tee ... 119
16.3. grep ... 119
16.4. cut ... 120
16.5. tr ... 121
16.6. wc ... 122
16.7. sort .. 123
16.8. uniq ... 123
16.9. comm .. 124
16.10. od .. 125
16.11. sed .. 125
16.12. pipe examples ... 126
16.13. practice: filters ... 127
16.14. solution: filters ... 128

Commands that are created to be used with a pipe are often called filters. These
filters are very small programs that do one specific thing very efficiently. They can
be used as building blocks.

This chapter will introduce you to the most common filters. The combination of
simple commands and filters in a long pipe allows you to design elegant solutions.

filters

119

16.1. cat
When between two pipes, the cat command does nothing (except putting stdin on
stdout.

[paul@RHEL4b pipes]$ tac count.txt | cat | cat | cat | cat | cat
five
four
three
two
one
[paul@RHEL4b pipes]$

16.2. tee
Writing long pipes in Unix is fun, but sometimes you might want intermediate results.
This is were tee comes in handy. The tee filter puts stdin on stdout and also into a
file. So tee is almost the same as cat, except that it has two identical outputs.

[paul@RHEL4b pipes]$ tac count.txt | tee temp.txt | tac
one
two
three
four
five
[paul@RHEL4b pipes]$ cat temp.txt
five
four
three
two
one
[paul@RHEL4b pipes]$

16.3. grep
The grep filter is famous among Unix users. The most common use of grep is to
filter lines of text containing (or not containing) a certain string.

[paul@RHEL4b pipes]$ cat tennis.txt
Amelie Mauresmo, Fra
Kim Clijsters, BEL
Justine Henin, Bel
Serena Williams, usa
Venus Williams, USA
[paul@RHEL4b pipes]$ cat tennis.txt | grep Williams
Serena Williams, usa
Venus Williams, USA

You can write this without the cat.

[paul@RHEL4b pipes]$ grep Williams tennis.txt
Serena Williams, usa
Venus Williams, USA

One of the most useful options of grep is grep -i which filters in a case insensitive
way.

filters

120

[paul@RHEL4b pipes]$ grep Bel tennis.txt
Justine Henin, Bel
[paul@RHEL4b pipes]$ grep -i Bel tennis.txt
Kim Clijsters, BEL
Justine Henin, Bel
[paul@RHEL4b pipes]$

Another very useful option is grep -v which outputs lines not matching the string.

[paul@RHEL4b pipes]$ grep -v Fra tennis.txt
Kim Clijsters, BEL
Justine Henin, Bel
Serena Williams, usa
Venus Williams, USA
[paul@RHEL4b pipes]$

And of course, both options can be combined to filter all lines not containing a case
insensitive string.

[paul@RHEL4b pipes]$ grep -vi usa tennis.txt
Amelie Mauresmo, Fra
Kim Clijsters, BEL
Justine Henin, Bel
[paul@RHEL4b pipes]$

With grep -A1 one line after the result is also displayed.

paul@debian5:~/pipes$ grep -A1 Henin tennis.txt
Justine Henin, Bel
Serena Williams, usa

With grep -B1 one line before the result is also displayed.

paul@debian5:~/pipes$ grep -B1 Henin tennis.txt
Kim Clijsters, BEL
Justine Henin, Bel

With grep -C1 (context) one line before and one after are also displayed. All three
options (A,B, and C) can display any number of lines (using e.g. A2, B4 or C20).

paul@debian5:~/pipes$ grep -C1 Henin tennis.txt
Kim Clijsters, BEL
Justine Henin, Bel
Serena Williams, usa

16.4. cut
The cut filter can select columns from files, depending on a delimiter or a count of
bytes. The screenshot below uses cut to filter for the username and userid in the /etc/
passwd file. It uses the colon as a delimiter, and selects fields 1 and 3.

filters

121

[[paul@RHEL4b pipes]$ cut -d: -f1,3 /etc/passwd | tail -4
Figo:510
Pfaff:511
Harry:516
Hermione:517
[paul@RHEL4b pipes]$

When using a space as the delimiter for cut, you have to quote the space.

[paul@RHEL4b pipes]$ cut -d" " -f1 tennis.txt
Amelie
Kim
Justine
Serena
Venus
[paul@RHEL4b pipes]$

This example uses cut to display the second to the seventh character of /etc/passwd.

[paul@RHEL4b pipes]$ cut -c2-7 /etc/passwd | tail -4
igo:x:
faff:x
arry:x
ermion
[paul@RHEL4b pipes]$

16.5. tr
You can translate characters with tr. The screenshot shows the translation of all
occurrences of e to E.

[paul@RHEL4b pipes]$ cat tennis.txt | tr 'e' 'E'
AmEliE MaurEsmo, Fra
Kim ClijstErs, BEL
JustinE HEnin, BEl
SErEna Williams, usa
VEnus Williams, USA

Here we set all letters to uppercase by defining two ranges.

[paul@RHEL4b pipes]$ cat tennis.txt | tr 'a-z' 'A-Z'
AMELIE MAURESMO, FRA
KIM CLIJSTERS, BEL
JUSTINE HENIN, BEL
SERENA WILLIAMS, USA
VENUS WILLIAMS, USA
[paul@RHEL4b pipes]$

Here we translate all newlines to spaces.

[paul@RHEL4b pipes]$ cat count.txt
one

filters

122

two
three
four
five
[paul@RHEL4b pipes]$ cat count.txt | tr '\n' ' '
one two three four five [paul@RHEL4b pipes]$

The tr -s filter can also be used to squeeze multiple occurrences of a character to one.

[paul@RHEL4b pipes]$ cat spaces.txt
one two three
 four five six
[paul@RHEL4b pipes]$ cat spaces.txt | tr -s ' '
one two three
 four five six
[paul@RHEL4b pipes]$

You can also use tr to 'encrypt' texts with rot13.

[paul@RHEL4b pipes]$ cat count.txt | tr 'a-z' 'nopqrstuvwxyzabcdefghijklm'
bar
gjb
guerr
sbhe
svir
[paul@RHEL4b pipes]$ cat count.txt | tr 'a-z' 'n-za-m'
bar
gjb
guerr
sbhe
svir
[paul@RHEL4b pipes]$

This last example uses tr -d to delete characters.

paul@debian5:~/pipes$ cat tennis.txt | tr -d e
Amli Maursmo, Fra
Kim Clijstrs, BEL
Justin Hnin, Bl
Srna Williams, usa
Vnus Williams, USA

16.6. wc
Counting words, lines and characters is easy with wc.

[paul@RHEL4b pipes]$ wc tennis.txt
 5 15 100 tennis.txt
[paul@RHEL4b pipes]$ wc -l tennis.txt
5 tennis.txt
[paul@RHEL4b pipes]$ wc -w tennis.txt
15 tennis.txt
[paul@RHEL4b pipes]$ wc -c tennis.txt
100 tennis.txt

filters

123

[paul@RHEL4b pipes]$

16.7. sort
The sort filter will default to an alphabetical sort.

paul@debian5:~/pipes$ cat music.txt
Queen
Brel
Led Zeppelin
Abba
paul@debian5:~/pipes$ sort music.txt
Abba
Brel
Led Zeppelin
Queen

But the sort filter has many options to tweak its usage. This example shows sorting
different columns (column 1 or column 2).

[paul@RHEL4b pipes]$ sort -k1 country.txt
Belgium, Brussels, 10
France, Paris, 60
Germany, Berlin, 100
Iran, Teheran, 70
Italy, Rome, 50
[paul@RHEL4b pipes]$ sort -k2 country.txt
Germany, Berlin, 100
Belgium, Brussels, 10
France, Paris, 60
Italy, Rome, 50
Iran, Teheran, 70

The screenshot below shows the difference between an alphabetical sort and a
numerical sort (both on the third column).

[paul@RHEL4b pipes]$ sort -k3 country.txt
Belgium, Brussels, 10
Germany, Berlin, 100
Italy, Rome, 50
France, Paris, 60
Iran, Teheran, 70
[paul@RHEL4b pipes]$ sort -n -k3 country.txt
Belgium, Brussels, 10
Italy, Rome, 50
France, Paris, 60
Iran, Teheran, 70
Germany, Berlin, 100

16.8. uniq
With uniq you can remove duplicates from a sorted list.

filters

124

paul@debian5:~/pipes$ cat music.txt
Queen
Brel
Queen
Abba
paul@debian5:~/pipes$ sort music.txt
Abba
Brel
Queen
Queen
paul@debian5:~/pipes$ sort music.txt |uniq
Abba
Brel
Queen

uniq can also count occurrences with the -c option.

paul@debian5:~/pipes$ sort music.txt |uniq -c
 1 Abba
 1 Brel
 2 Queen

16.9. comm
Comparing streams (or files) can be done with the comm. By default comm will
output three columns. In this example, Abba, Cure and Queen are in both lists, Bowie
and Sweet are only in the first file, Turner is only in the second.

paul@debian5:~/pipes$ cat > list1.txt
Abba
Bowie
Cure
Queen
Sweet
paul@debian5:~/pipes$ cat > list2.txt
Abba
Cure
Queen
Turner
paul@debian5:~/pipes$ comm list1.txt list2.txt
 Abba
Bowie
 Cure
 Queen
Sweet
 Turner

The output of comm can be easier to read when outputting only a single column. The
digits point out which output columns should not be displayed.

paul@debian5:~/pipes$ comm -12 list1.txt list2.txt
Abba
Cure
Queen
paul@debian5:~/pipes$ comm -13 list1.txt list2.txt
Turner
paul@debian5:~/pipes$ comm -23 list1.txt list2.txt

basic unix tools

131

17.1. find
The find command can be very useful at the start of a pipe to search for files. Here are
some examples. You might want to add 2>/dev/null to the command lines to avoid
cluttering your screen with error messages.

Find all files in /etc and put the list in etcfiles.txt

find /etc > etcfiles.txt

Find all files of the entire system and put the list in allfiles.txt

find / > allfiles.txt

Find files that end in .conf in the current directory (and all subdirs).

find . -name "*.conf"

Find files of type file (not directory, pipe or etc.) that end in .conf.

find . -type f -name "*.conf"

Find files of type directory that end in .bak .

find /data -type d -name "*.bak"

Find files that are newer than file42.txt

find . -newer file42.txt

Find can also execute another command on every file found. This example will look
for *.odf files and copy them to /backup/.

find /data -name "*.odf" -exec cp {} /backup/ \;

Find can also execute, after your confirmation, another command on every file found.
This example will remove *.odf files if you approve of it for every file found.

find /data -name "*.odf" -ok rm {} \;

17.2. locate
The locate tool is very different from find in that it uses an index to locate files. This
is a lot faster than traversing all the directories, but it also means that it is always
outdated. If the index does not exist yet, then you have to create it (as root on Red
Hat Enterprise Linux) with the updatedb command.

[paul@RHEL4b ~]$ locate Samba
warning: locate: could not open database: /var/lib/slocate/slocate.db:...
warning: You need to run the 'updatedb' command (as root) to create th...
Please have a look at /etc/updatedb.conf to enable the daily cron job.
[paul@RHEL4b ~]$ updatedb
fatal error: updatedb: You are not authorized to create a default sloc...
[paul@RHEL4b ~]$ su -
Password:

basic unix tools

132

[root@RHEL4b ~]# updatedb
[root@RHEL4b ~]#

Most Linux distributions will schedule the updatedb to run once every day.

17.3. date
The date command can display the date, time, timezone and more.

paul@rhel55 ~$ date
Sat Apr 17 12:44:30 CEST 2010

A date string can be customized to display the format of your choice. Check the man
page for more options.

paul@rhel55 ~$ date +'%A %d-%m-%Y'
Saturday 17-04-2010

Time on any Unix is calculated in number of seconds since 1969 (the first second
being the first second of the first of January 1970). Use date +%s to display Unix
time in seconds.

paul@rhel55 ~$ date +%s
1271501080

When will this seconds counter reach two thousand million ?

paul@rhel55 ~$ date -d '1970-01-01 + 2000000000 seconds'
Wed May 18 04:33:20 CEST 2033

17.4. cal
The cal command displays the current month, with the current day highlighted.

paul@rhel55 ~$ cal
 April 2010
Su Mo Tu We Th Fr Sa
 1 2 3
 4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30

You can select any month in the past or the future.

paul@rhel55 ~$ cal 2 1970
 February 1970
Su Mo Tu We Th Fr Sa
 1 2 3 4 5 6 7

basic unix tools

133

 8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28

17.5. sleep
The sleep command is sometimes used in scripts to wait a number of seconds. This
example shows a five second sleep.

paul@rhel55 ~$ sleep 5
paul@rhel55 ~$

17.6. time
The time command can display how long it takes to execute a command. The date
command takes only a little time.

paul@rhel55 ~$ time date
Sat Apr 17 13:08:27 CEST 2010

real 0m0.014s
user 0m0.008s
sys 0m0.006s

The sleep 5 command takes five real seconds to execute, but consumes little cpu
time.

paul@rhel55 ~$ time sleep 5

real 0m5.018s
user 0m0.005s
sys 0m0.011s

This bzip2 command compresses a file and uses a lot of cpu time.

paul@rhel55 ~$ time bzip2 text.txt

real 0m2.368s
user 0m0.847s
sys 0m0.539s

17.7. gzip - gunzip
Users never have enough disk space, so compression comes in handy. The gzip
command can make files take up less space.

	1_cas_linux
	1_cas_osnovne_komande
	1_cas_file_globing_and_redirection
	1_cas_pipes_filters
	1_cas_compress

