The Linux Command Line & Shell Scripting Bible 2™ Edition

The next chapter discusses how to interact with your shell script user. Often, shell
scripts aren't completely self-contained. They require some sort of external data that
must be supplied at the time you run them. The next chapter discusses different
methods with which you can provide real-time data to your shell scripts for processing.

Chapter 13

Handling User Input

In This Chapter

« Command line parameters
» Special parameter variables
» Being shifty

» Working with options

» Standardizing options

» Getting user input

So far you've seen how to write scripts that interact with data, variables, and files on the
Linux system. Sometimes, you need to write a script that has to interact with the person
running the script. The bash shell provides a few different methods for retrieving data
from people, including command line parameters (data values added after the
command), command line options (single-letter values that modify the behavior of the
command), and the capability to read input directly from the keyboard. This chapter
discusses how to incorporate these different methods into your bash shell scripts to
obtain data from the person running your script.

Command Line Parameters

The most basic method of passing data to your shell script is to use command line
parameters. Command line parameters allow you to add data values to the command
line when you execute the script:

$./addem 10 30

This example passes two command line parameters (10 and 30) to the script addem.
The script handles the command line parameters using special variables. The following
sections describe how to use command line parameters in your bash shell scripts.

Reading Parameters

332

The Linux Command Line & Shell Scripting Bible 2™ Edition

The bash shell assigns special variables, called positional parameters, to all of the
parameters entered in a command line. This even includes the name of the program the
shell executes. The positional parameter variables are standard numbers, with $0 being
the name of the program, $1 being the first parameter, $2 being the second parameter,
and so on, up to $9 for the ninth parameter.

Here's a simple example of using one command line parameter in a shell script:

$ cat testl

#!/bin/bash

using one command line parameter

factorial=1
for ((number = 1; number <= $1 ; number++))
do

factorial=$[$factorial * $number]

done

echo The factorial of $1 is $factorial

$

$./testl 5

The factorial of 5 is 120

$

You can use the $1 variable just like any other variable in the shell script. The shell
script automatically assigns the value from the command line parameter to the variable;
you don't need to do anything with it.

If you need to enter more command line parameters, each parameter must be
separated by a space on the command line:

$ cat test2

#!/bin/bash

testing two command line parameters

total=$[$1 * $2]

echo The first parameter is $1.

echo The second parameter is $2.

echo The total value is $total.

$

$./test2 2 5

The first parameter is 2.

The second parameter is 5.

The total value is 10.

$

The shell assigns each parameter to the appropriate variable.

In this example, the command line parameters used were both numerical values. You
can also use text strings in the command line:

$ cat test3

#!/bin/bash

333

The Linux Command Line & Shell Scripting Bible 2™ Edition

testing string parameters

echo Hello $1, glad to meet you.
$

$./test3 Rich

Hello Rich, glad to meet you.

$

The shell passes the string value entered into the command line to the script.
However, you'll have a problem if you try to do this with a text string that contains

spaces:
$./test3 Rich Blum
Hello Rich, glad to meet you.
$

Remember that each of the parameters is separated by a space, so the shell
interpreted the space as just separating the two values. To include a space as a
parameter value, you must use quotation marks (either single or double quotation

marks):
$./test3 ‘Rich Blum’
Hello Rich Blum, glad to meet you.
$
$./test3 “Rich Blum”
Hello Rich Blum, glad to meet you.
$

Note

The quotation marks used when you pass text strings as parameters are not part of the
data. They just delineate the beginning and the end of the data.

If your script needs more than nine command line parameters, you can continue, but
the variable names change slightly. After the ninth variable, you must use braces around
the variable number, such as ${10}. Here's an example of doing that:

$ cat test4
#!/bin/bash
handling lots of parameters

total=$[${10} * ${11}]

echo The tenth parameter is ${10}
echo The eleventh parameter is ${11}
echo The total is $total

$

$./test4 12345678910 11 12
The tenth parameter is 10

The eleventh parameter is 11

The total is 110

$

334

The Linux Command Line & Shell Scripting Bible 2™ Edition

This technique allows you to add as many command line parameters to your scripts
as you could possibly need.

Reading the Program Name

You can use the $0 parameter to determine the name of the program that the shell
started from the command line. This can come in handy if you're writing a utility that
can have multiple functions. However, there's a small problem that you'll have to deal
with. Look what happens in this simple example:

$ cat test5

#!/bin/bash

testing the $0 parameter

echo The command entered is: $0

$

$./testh

The command entered is: ./test5
$

$ /home/rich/test5

The command entered is: /home/rich/test5

$

When the actual string passed in the $0 variable is the entire script path, then the
entire path will be used for the program, and not just the program name.

If you want to write a script that performs different functions based on the name of

the script run from the command line, you'll have to do a little work. You need to be able
to strip off whatever path is used to run the script from the command line.

Fortunately, there's a handy little command available for you that does just that.
The basename command returns just the program name without the path. Let's modify
the example script and see how this works:

$ cat test5b

#!/bin/bash

using basename with the $0 parameter

name=‘basename $0’
echo The command entered is: $name

$

$./testhb

The command entered is: testb5b
$

$ /home/rich/test5b
The command entered is: testb5b

$

335

The Linux Command Line & Shell Scripting Bible 2™ Edition

Now that's much better. You can now use this technique to write scripts that perform
different functions based on the script name used. Here's a simple example to
demonstrate this:

$ cat test6

#!/bin/bash

testing a multi-function script

name=‘basename $0’

if [$name = “addem”]
then
total=$[$1 + $2]
elif [$name = “multem”]
then
total=$[$1 * $2 1]
fi
echo The calculated value is $total
$
$ chmod u+x test6
$ cp test6 addem
$ In -s test6 multem

$ s -1

-rwWXr--r-- 1 rich rich 211 Oct 15 18:00 addem

TrwX rwx rwx 1 rich rich 5 0ct 15 18:01 multem -> test6
-rwxXr--r-- 1 rich rich 211 Oct 15 18:00 test6

$

$./addem 2 5

The calculated value is 7

$

$./multem 2 5

The calculated value is 10

$

The example creates two separate filenames from the test6 code, one by just
copying the file and the other by using a link to create the new file. In both cases, the
script determines the base name of the script and performs the appropriate function
based on that value.

Testing Parameters

You need to be careful when using command line parameters in your shell scripts. If the
script runs without the parameters, bad things can happen:

$./addem 2

./addem: line 8: 2 + : syntax error: operand expected (error

336

The Linux Command Line & Shell Scripting Bible 2™ Edition

token is “ ")
The calculated value is
$

When the script assumes there is data in a parameter variable, and there isn't, most
likely you'll get an error message from your script. This is a poor way to write scripts. It's
always a good idea to check your parameters to make sure the data is there before
using it:

$ cat test7

#!/bin/bash

testing parameters before use

if [-n “$1"]
then

echo Hello $1, glad to meet you.
else

echo “Sorry, you did not identify yourself. ”
fi
$
$./test7 Rich
Hello Rich, glad to meet you.

$
$./test?

Sorry, you did not identify yourself.
$

In this example, the -n parameter was used in the test command to check if there
was data in the command line parameter. In the next section, you'll see there is yet
another way to check for command line parameters.

Special Parameter Variables

There are a few special variables available in the bash shell, which track command line
parameters. This section describes what they are, and how to use them.

Counting Parameters

As you saw in the last section, it's often a good idea to verify command line parameters
before using them in your script. For scripts that use multiple command line parameters,
this can get tedious.

Instead of testing each parameter, you can just count how many parameters were
entered on the command line. The bash shell provides a special variable for this
purpose.

337

The Linux Command Line & Shell Scripting Bible 2™ Edition

The special $# variable contains the number of command line parameters included
when the script was run. You can use this special variable anywhere in the script, just
like @ normal variable:

$ cat test8

#!/bin/bash

getting the number of parameters

echo There were $# parameters supplied.

$

$./test8

There were 0 parameters supplied.
$

$./test8 1 2345
There were 5 parameters supplied.

$

$./test8 123456789 10

There were 10 parameters supplied.

$

$./test8 “Rich Blum”

There were 1 parameters supplied.

$

Now you have the ability to test the number of parameters present before trying to
use them:

$ cat test9

#!/bin/bash

testing parameters

if [$# -ne 2]
then

echo Usage: test9 a b
else

total=$[$1 + $2]

echo The total is $total
fi
$
$./test9
Usage: test9 a b
$
$./test9 10
Usage: test9 a b

$
$./test9 10 15
The total is 25

338

The Linux Command Line & Shell Scripting Bible 2™ Edition

$

$./test9 10 15 20

Usage: test9 a b

$

The if-then statement uses the test command to perform a numeric test of the
number of parameters supplied on the command line. If the correct number of
parameters isn't present, you can print an error message that shows the correct usage
of the script.

This variable also provides a cool way of grabbing the last parameter on the
command line, without having to know how many parameters were used. However, you
need to use a little trick to get there.

If you think this through, you might think that because the $# variable contains the
value of the number of parameters, then using the variable ${$#} would represent the
last command line parameter variable. Try that out and see what happens:

$ cat badtestl

#!/bin/bash

testing grabbing last parameter

echo The last parameter was ${$#}

$

$./badtestl 10

The last parameter was 15354

$

Wow, what happened here? Obviously, something wrong happened. It turns out that
you can't use the dollar sign within the braces. Instead, you must replace the dollar sign
with an exclamation mark. Odd, but it works:

$ cat testlo

#!/bin/bash

grabbing the last parameter

params=$#

echo The last parameter is $params

echo The last parameter is ${!#}

$

$./testl0 1 2 345

The last parameter is 5

The last parameter is 5

$

$./testl0

The last parameter is 0

The last parameter is ./test10

$

Perfect. This test also assigned the $# variable value to the variable params and then
used that variable within the special command line parameter variable format as well.

339

The Linux Command Line & Shell Scripting Bible 2™ Edition

Both versions worked. It's also important to notice that, when there weren't any
parameters on the command line, the $# value was zero, which is what appears in
theparams variable, but the ${!#} variable returns the script name used on the
command line.

Grabbing All the Data

There are situations where you'll want to just grab all of the parameters provided on the
command line and iterate through all of them. Instead of having to mess with using
the $# variable to determine how many parameters are on the command line, then
having to loop through all of them, you can use a couple of other special variables.

The $* and $@ variables provide easy access to all of your parameters. Both of these
variables include all of the command line parameters within a single variable.

The $* variable takes all of the parameters supplied on the command line as a single
word. The word contains each of the values as they appear on the command line.
Basically, instead of treating the parameters as multiple objects, the $* variable treats
them all as one parameter.

The $@ variable, on the other hand, takes all of the parameters supplied on the
command line as separate words in the same string. It allows you to iterate through the
value, separating out each parameter supplied. This is most often accomplished using
the for command.

It can easily get confusing to figure out how these two variables operate. Let's take a
look, so you can see the difference between the two:

$ cat testll

#!/bin/bash

testing $* and $@

echo “Using the \$* method: $*”

echo “Using the \$@ method: $@”

$

$./testll rich barbara katie jessica

Using the $* method: rich barbara katie jessica

Using the $@ method: rich barbara katie jessica

$

Notice that on the surface, both variables produce the same output, showing all of the
command line parameters provided at once.

The following example demonstrates where the differences are:

$ cat testl2

#!/bin/bash

testing $* and $@

count=1
for param in “$*”
do

340

The Linux Command Line & Shell Scripting Bible 2™ Edition

echo “\$* Parameter #$count = $param”
count=$[$count + 1]

done

count=1

for param in “$@”

do
echo “\$@ Parameter #$count = $param”

count=$[$count + 1]

done

$

$./testl2 rich barbara katie jessica

$* Parameter #1 = rich barbara katie jessica

$@ Parameter #1 = rich

$@ Parameter #2 = barbara

$@ Parameter #3 = katie

$@ Parameter #4 = jessica

$

Now we're getting somewhere. By using the for command to iterate through the
special variables, you can see how they each treat the command line parameters
differently. The $* variable treated all of the parameters as a single parameter, while
the $@ variable treated each parameter separately. This is a great way to iterate through
command line parameters.

Being Shifty

Another tool you have in your bash shell tool belt is the shift command. The bash shell
provides the shift command to help you manipulate command line parameters.
The shift command literally shifts the command line parameters in their relative
positions.

When you use the shift command, it “downgrades” each parameter variable one
position by default. Thus, the value for variable $3is moved to $2, the value for
variable $2 is moved to $1, and the value for variable $1 is discarded (note that the
value for variable $0, the program name, remains unchanged).

This is another great way to iterate through command line parameters, especially if
you don't know how many parameters are available. You can just operate on the first
parameter, shift the parameters over, and then operate on the first parameter again.

Here's a short demonstration of how this works:

$ cat testl3

#!/bin/bash

demonstrating the shift command

341

The Linux Command Line & Shell Scripting Bible 2™ Edition

count=1
while [-n “$1"”]
do

echo “Parameter #$count = $1”
count=$[$count + 1]

shift
done
$
$./testl3 rich barbara katie jessica
Parameter #1 = rich

Parameter #2 = barbara
Parameter #3 = katie
Parameter #4 = jessica

$
The script performs a while loop, testing the length of the first parameter's value.
When the first parameter's length is zero, the loop ends.

After testing the first parameter, the shift command is used to shift all of the
parameters one position.

Alternatively, you can perform a multiple location shift by providing a parameter to
the shift command. Just provide the number of places you want to shift:

$ cat testld

#!/bin/bash

demonstrating a multi-position shift

echo “The original parameters: $*”
shift 2
echo “Here's the new first parameter: $1”

$

$./testld 1 2 3 45

The original parameters: 1 2 3 45
Here's the new first parameter: 3

$

By using values in the shift command, you can easily skip over parameters you
don't need.

Caution

Be careful when working with the shift command. When a parameter is shifted out, its value is
lost and can't be recovered.

Working with Options

342

The Linux Command Line & Shell Scripting Bible 2™ Edition

If you've been following along in the book, you've seen several bash commands that
provide both parameters and options. Options are single letters preceded by a dash that
alter the behavior of a command. This section shows three different methods for
working with options in your shell scripts.

Finding Your Options

On the surface, there's nothing all that special about command line options. They
appear on the command line immediately after the script name, just the same as
command line parameters. In fact, if you want, you can process command line options
the same way that you process command line parameters.

Processing Simple Options

In the test13 script earlier, you saw how to use the shift command to work your way
down the command line parameters provided with the script program. You can use this
same technique to process command line options.

As you extract each individual parameter, use the case statement to determine when
a parameter is formatted as an option:

$ cat testl5

#!/bin/bash

extracting command line options as parameters

while [-n “$1”]

do
case “$1” in
-a) echo “Found the -a option” ;;
-b) echo vFound the -b option”;;
-c) echo “Found the -c option” ;;
*) echo “$1 is not an option”;;
esac

shift

done

$

$./testl5 -a -b -c -d

Found the -a option

Found the -b option

Found the -c option

-d is not an option

$

The case statement checks each parameter for valid options. When one is found, the
appropriate commands are run in the case statement.

343

The Linux Command Line & Shell Scripting Bible 2™ Edition

This method works, no matter what order the options are presented on the command
line:

$./testl5 -d -c -a

-d is not an option

Found the -c option

Found the -a option

$

The case statement processes each option as it finds it in the command line
parameters. If any other parameters are included on the command line, you can include
commands in the catch-all part of the case statement to process them.

Separating Options from Parameters

Often you'll run into situations where you'll want to use both options and parameters for
a shell script. The standard way to do this in Linux is to separate the two with a special
character code that tells the script when the options are done and when the normal
parameters start.

For Linux, this special character is the double dash (--). The shell uses the double
dash to indicate the end of the option list. After seeing the double dash, your script can
safely process the remaining command line parameters as parameters and not options.

To check for the double dash, simply add another entry in the case statement:
$ cat testl6

#!/bin/bash

extracting options and parameters

while [-n “$1”]
do

case “$1” in
-a) echo “Found the -a option” ;;
-b) echo “Found the -b option”;;
-c) echo “Found the -c option” ;;
--) shift

break ;;
*) echo “$1 is not an option”;;
esac

shift
done

count=1
for param in $@
do

344

The Linux Command Line & Shell Scripting Bible 2™ Edition

echo “Parameter #$count: $param”

count=$[$count + 1]

done

$

This script uses the break command to break out of the whileloop when it
encounters the double dash. Because we're breaking out prematurely, we need to
ensure that we stick in another shift command to get the double dash out of the
parameter variables.

For the first test, try running the script using a normal set of options and parameters:

$./testl6e -c -a -b testl test2 test3

Found the -c option

Found the -a option

Found the -b option

testl is not an option

test2 is not an option

test3 is not an option

$

The results show that the script assumed that all the command line parameters were
options when it processed them. Next, try the same thing, only this time using the
double dash to separate the options from the parameters on the command line:

$./testl6 -c -a -b -- testl test2 test3

Found the -c option

Found the -a option

Found the -b option

Parameter #1: testl

Parameter #2: test2

Parameter #3: test3

$

When the script reaches the double dash, it stops processing options and assumes
that any remaining parameters are command line parameters.

Processing Options with Values

Some options require an additional parameter value. In these situations, the command
line looks something like this:

$./testing -a testl -b -c -d test2

Your script must be able to detect when your command line option requires an
additional parameter and be able to process it appropriately. Here's an example of how
to do that:

$ cat testl7

#!/bin/bash

extracting command line options and values

while [-n “$1”]

345

The Linux Command Line & Shell Scripting Bible 2™ Edition

do
case “$1” in
-a) echo “Found the -a option”;;
-b) param="“$2"
echo “Found the -b option, with parameter value $param”
shift 2;;
-c) echo “Found the -c option”;;
--) shift
break;;
*) echo “$1 is not an option”;;
esac

shift
done

count=1
for param in “$@”
do

echo “Parameter #$count: $param”

count=$[$count + 1]

done

$

$./testl7 -a -b testl -d

Found the -a option

Found the -b option, with parameter value testl

-d is not an option

$

In this example, the case statement defines three options that it processes. The -
b option also requires an additional parameter value. Since the parameter being
processed is $1, you know that the additional parameter value is located in $2 (because
all of the parameters are shifted after they are processed). Just extract the parameter
value from the $2 variable. Of course, because we used two parameter spots for this
option, you also need to set the shift command to shift two positions.

Just as with the basic feature, this process works no matter what order you place the
options in (just remember to include the appropriate option parameter with the each
option):

$./testl7 -b testl -a -d

Found the -b option, with parameter value testl

Found the -a option

-d is not an option

$

346

The Linux Command Line & Shell Scripting Bible 2™ Edition

Now you have the basic ability to process command line options in your shell scripts,
but there are limitations. For example, this won't work if you try to combine multiple
options in one parameter:

$./testl7 -ac

-ac is not an option

$

It is @ common practice in Linux to combine options, and if your script is going to be
user-friendly, you'll want to offer this feature for your users as well. Fortunately, there's
another method for processing options that can help you.

Using the getopt Command

The getopt command is a great tool to have handy when processing command line
options and parameters. It reorganizes the command line parameters to make parsing
them in your script easier.

The Command Format

The getopt command can take a list of command line options and parameters, in any
form, and automatically turn them into the proper format. It uses the following
command format:

getopt options optstring parameters

The optstring is the key to the process. It defines the valid option letters used in
the command line. It also defines which option letters require a parameter value.

First, list each command line option letter you're going to use in your script in
the optstring. Then, place a colon after each option letter that requires a parameter
value. The getopt command parses the supplied parameters based on
the optstring you define.

Here's a simple example of how getopt works:

$ getopt ab:cd -a -b testl -cd test2 test3

-a -b testl -c -d -- test2 test3

$

The optstring defines four valid option letters, a, b, ¢, and d. It also defines that
the option letter brequires a parameter value. When the getopt command runs, it
examines the provided parameter list and parses it based on the supplied optstring.
Notice that it automatically separated the -cd options into two separate options and
inserted the double dash to separate the additional parameters on the line.

If you specify an option not in the optstring, by default the getopt command
produces an error message:

$ getopt ab:cd -a -b testl -cde test2 test3

getopt: invalid option -- e

-a -b testl -c -d -- test2 test3

$

If you prefer to just ignore the error messages, use the -q option with the command:

347

The Linux Command Line & Shell Scripting Bible 2™ Edition

$ getopt -q ab:cd -a -b testl -cde test2 test3

-a -b ‘testl’ -c -d -- ‘test2’ ‘test3’

$

Note that the getopt command options must be listed before the optstring. Now

you should be ready to use this command in your scripts to process command line
options.

Using getopt in Your Scripts

You can use the getopt command in your scripts to format any command line options
or parameters entered for your script. It's a little tricky, however, to use.

The trick is to replace the existing command line options and parameters with the
formatted version produced by the getopt command. The way to do that is to use
the set command.

You saw the set command back in Chapter 5. The set command works with the
different variables in the shell. Chapter 5 showed how to use the set command to
display all of the system environment variables.

One of the options of the set command is the double dash, which instructs it to
replace the command line parameter variables with the values on the set command's
command line.

The trick then is to feed the original script command line parameters to
the getopt command, and then feed the output of the getopt command to
the set command to replace the original command line parameters with the nicely
formatted ones from getopt. This looks something like this:

set -- ‘getopts -q ab:cd “3$@"°

Now the values of the original command line parameter variables are replaced with
the output from the getoptcommand, which formats the command line parameters for
us.

Using this technique, we can now write scripts that handle our command line
parameters for us:

$ cat testl8

#!/bin/bash

extracting command line options and values with getopt

set -- ‘getopt -q ab:c “$@"°
while [-n “$1"]
do

case “$1” in
-a) echo “Found the -a option” ;;
-b) param=“$2"
echo “Found the -b option, with parameter value $param”

shift ;;

348

The Linux Command Line & Shell Scripting Bible 2™ Edition

-c) echo “Found the -c option” ;;
--) shift

break;;
*) echo “$1 is not an option”;;
esac

shift
done

count=1
for param in “$@”
do

echo “Parameter #$count: $param”

count=$[$count + 1]

done

$

You'll notice this is basically the same script as in test1l7. The only thing that
changed is the addition of thegetopt command to help format our command line
parameters.

Now when you run the script with complex options, things work much better:

$./testl8 -ac

Found the -a option

Found the -c option

$

And of course, all of the original features work just fine as well:

$./testl8 -a -b testl -cd test2 test3 testd

Found the -a option

Found the -b option, with parameter value ‘testl’

Found the -c option

Parameter #1: ‘test2’

Parameter #2: ‘test3’

Parameter #3: ‘test4’

$

Now things are looking pretty fancy. However, there's still one small bug that lurks in
the getopt command. Check out this example:

$./testl8 -a -b testl -cd “test2 test3” test4d

Found the -a option

Found the -b option, with parameter value ‘testl’

Found the -c option

Parameter #1: ‘test2’

Parameter #2: ‘test3’

Parameter #3: ‘test4’

349

The Linux Command Line & Shell Scripting Bible 2™ Edition

$

The getopt command isn't good at dealing with parameter values with spaces. It
interpreted the space as the parameter separator, instead of following the double
quotation marks and combining the two values into one parameter. Fortunately, there's
yet another solution that solves this problem.

The More Advanced getopts

The getopts command (notice that it is plural) is built into the bash shell. It looks a lot
like its getopt cousin, but has some expanded features.

Unlike getopt, which produces one output for all of the processed options and
parameters found in the command line, the getopts command works on the existing
shell parameter variables sequentially.

It processes the parameters it detects in the command line one at a time each time
it's called. When it runs out of parameters, it exits with an exit status greater than zero.
This makes it great for using in loops to parse all of the parameters on the command
line.

The format of the getopts command is:

getopts optstring variable

The optstring value is similar to the one used in the getopt command. Valid
option letters are listed in theoptstring, along with a colon if the option letter requires
a parameter value. To suppress error messages, start the optstring with a colon.
The getopts command places the current parameter in the variable defined in the
command line.

There are two environment Vvariables that the getopts command uses.
The OPTARG environment variable contains the value to be used if an option requires a
parameter value. The OPTIND environment variable contains the value of the current
location within the parameter list where getopts left off. This allows you to continue
processing other command line parameters after finishing the options.

Let's take a look at a simple example that uses the getopts command:

$ cat testl9

#!/bin/bash

simple demonstration of the getopts command

while getopts :ab:c opt
do

case “$opt” in

a) echo “Found the -a option” ;;

b) echo “Found the -b option, with value $0PTARG";;
c) echo “Found the -c option” ;;

*) echo “Unknown option: $opt”;;

esac

350

The Linux Command Line & Shell Scripting Bible 2™ Edition

done

$

$./testl9 -ab testl -c

Found the -a option

Found the -b option, with value testl

Found the -c option

$

The while statement defines the getopts command, specifying what command line
options to look for, along with the variable name to store them in for each iteration.

You'll notice something different about the case statement in this example. When
the getopts command parses the command line options, it also strips off the leading
dash, so you don't need them in the case definitions.

There are several nice features in the getopts command. For starters, you can now
include spaces in your parameter values:

$./testl9 -b “testl test2” -a

Found the -b option, with value testl test2

Found the -a option

$

Another nice feature is that you can run the option letter and the parameter value
together without a space:

$./testl9 -abtestl

Found the -a option

Found the -b option, with value testl

$

The getopts command correctly parsed the testl value from the -b option. Yet
another nice feature of the getoptscommand is that it bundles any undefined option
that it finds in the command line into a single output, the question mark:

$./testl9 -d

Unknown option: ?

$

$./testl9 -acde

Found the -a option

Found the -c option

Unknown option: ?

Unknown option: ?

$

Any option letter not defined in the optstring value is sent to your code as a
question mark.

The getopts command knows when to stop processing options, and leave the
parameters for you to process. Asgetopts processes each option, it increments
the OPTIND environment variable by one. When vyou've reached the end of
the getopts processing, you can just use the OPTIND value with the shift command
to move to the parameters:

$ cat test20

#!/bin/bash

351

The Linux Command Line & Shell Scripting Bible 2™ Edition

processing options and parameters with getopts

while getopts :ab:cd opt
do

case “$opt” in

a) echo “Found the -a option” ;;

b) echo “Found the -b option, with value $0PTARG";;
c) echo “Found the -c option”;;

d) echo “Found the -d option”;;

*) echo “Unknown option: $opt”;;

esac

done
shift $[$OPTIND - 1]

count=1
for param in “$@”
do

echo “Parameter $count: $param”

count=$[$count + 1]

done

$

$./test20 -a -b testl -d test2 test3 test4d

Found the -a option

Found the -b option, with value testl

Found the -d option

Parameter 1: test2

Parameter 2: test3

Parameter 3: test4

$

Now you have a full-featured command line option and parameter processing utility
you can use in all of your shell scripts.

Standardizing Options

When you create your shell script, obviously you're in control of what happens. It's
completely up to you as to which letter options you select to use and how you select to
use them.

However, there are a few letter options that have achieved somewhat of a standard
meaning in the Linux world. If you leverage these options in your shell script, it will
make your scripts more user-friendly.

352

The Linux Command Line & Shell Scripting Bible 2™ Edition

Table 13.1 shows some of the common meanings for command line options used in
Linux.

Table 13.1 Common Linux Command Line Options

‘Option HDescription ‘
-a HShow all objects. ‘
-C HProduce a count. ‘
-d HSpecify a directory. ‘
-e HExpand an object. ‘
-f HSpecify a file to read data from. ‘
-h HDisplay a help message for the command. ‘
-1 ngnore text case. ‘
-1 HProduce a long format version of the output. ‘
-n HUse a non-interactive (batch) mode. ‘
-0 HSpecify an output file to redirect all output to. ‘
-q HRun in quiet mode. ‘
-r HProcess directories and files recursively. ‘
-S HRun in silent mode. ‘
-V HProduce verbose output. ‘
-X HExclude and object. ‘
-y HAnswer yes to all questions. ‘

You'll probably recognize most of these option meanings just from working with the
various bash commands throughout the book. Using the same meaning for your options
helps users interact with your script without having to worry about manuals.

Getting User Input

While providing command line options and parameters is a great way to get data from
your script users, sometimes your script needs to be more interactive. There are times
when you need to ask a question while the script is running and wait for a response from
the person running your script. The bash shell provides the read command just for this
purpose.

Basic Reading

The read command accepts input from the standard input (the keyboard) or from
another file descriptor (see Chapter 14). After receiving the input, the read command
places the data into a standard variable. Here's the read command at its simplest:

$ cat test2l

#!/bin/bash

testing the read command

353

The Linux Command Line & Shell Scripting Bible 2™ Edition

echo -n “Enter your name: "

read name

echo “Hello $name, welcome to my program. "

$

$./test2l

Enter your name: Rich Blum

Hello Rich Blum, welcome to my program.

$

That's pretty simple. Notice that the echo command that produced the prompt uses
the -n option. This suppresses the newline character at the end of the string, allowing
the script user to enter data immediately after the string, instead of on the next line.
This gives your scripts a more form-like appearance.

In fact, the read command includes the -p option, which allows you to specify a
prompt directly in the readcommand line:

$ cat test22

#!/bin/bash

testing the read -p option

read -p “Please enter your age: " age

days=$[$age * 365]

echo “That makes you over $days days old! ”

$

$./test22

Please enter your age:10

That makes you over 3650 days old!

$

You'll notice in the first example that when a name was entered, the read command
assigned both the first name and last name to the same variable. The read command
will assign all data entered at the prompt to a single variable, or you can specify
multiple variables. Each data value entered is assigned to the next variable in the list. If

the list of variables runs out before the data does, the remaining data is assigned to the
last variable:

$ cat test23
#!/bin/bash
entering multiple variables

read -p “Enter your name: " first last
echo “Checking data for $last, $first..”
$

$./test23

Enter your name: Rich Blum
Checking data for Blum, Rich...
$

354

The Linux Command Line & Shell Scripting Bible 2™ Edition

You can also specify no variables on the read command line. If you do that,
the read command places any data it receives in the special environment
variable REPLY:

$ cat test24

#!/bin/bash

testing the REPLY environment variable

read -p “Enter a number: ”

factorial=1

for ((count=1l; count <= $REPLY; count++))
do

factorial=$[$factorial * $count]

done

echo “The factorial of $REPLY is $factorial”

$

$./test24

Enter a number: 5

The factorial of 5 is 120

$

The REPLY environment variable will contain all of the data entered in the input, and
it can be used in the shell script as any other variable.

Timing Out

There's a danger when using the read command. It's quite possible that your script will
get stuck waiting for the script user to enter data. If the script must go on regardless of
whether there was any data entered, you can use the -t option to specify a timer. The -
t option specifies the number of seconds for the read command to wait for input. When
the timer expires, the read command returns a non-zero exit status:

$ cat test25

#!/bin/bash

timing the data entry

if read -t 5 -p “Please enter your name: " name
then

echo “Hello $name, welcome to my script”
else

echo

echo “Sorry, too slow! ”
fi
$
$./test25
Please enter your name: Rich

355

The Linux Command Line & Shell Scripting Bible 2™ Edition

Hello Rich, welcome to my script

$

$./test25

Please enter your name:

Sorry, too slow!

$

Since the read command exits with a non-zero exit status if the timer expires, it's
easy to use the standard structured statements, such as an if-then statement or
awhileloop to track what happened. In this example, when the timer expires,
the if statement fails, and the shell executes the commands in the else section.

Instead of timing the input, you can also set the read command to count the input
characters. When a preset number of characters has been entered, it automatically
exits, assigning the entered data to the variable:

$ cat test26

#!/bin/bash

getting just one character of input

read -nl -p “Do you want to continue [Y/N]? ” answer
case $answer in
Y | y) echo

echo “fine, continue on..”;;
N | n) echo
echo 0K, goodbye
exit;;
esac
echo “This is the end of the script”
$
$./test26
Do you want to continue [Y/N]? Y
fine, continue on..
This is the end of the script
$
$./test26
Do you want to continue [Y/N]? n
0K, goodbye
$
This example uses the -n option with the value of 1, instructing the read command
to accept only a single character before exiting. As soon as you press the single

character to answer, the read command accepts the input and passes it to the variable.
There's no need to press the Enter key.

Silent Reading

356

The Linux Command Line & Shell Scripting Bible 2™ Edition

There are times when you need input from the script user, but you don't want that input
to display on the monitor. The classic example is when entering passwords, but there
are plenty of other types of data that you will need to hide.

The -s option prevents the data entered in the read command from being displayed
on the monitor (actually, the data is displayed, but the read command sets the text

color to the same as the background color). Here's an example of using the -s option in
a script:

$ cat test27
#!/bin/bash
hiding input data from the monitor

read -s -p “Enter your password: " pass
echo

echo “Is your password really $pass? ”
$

$./test27

Enter your password:
Is your password really T3stlng?
$

The data typed at the input prompt doesn't appear on the monitor but is assigned to
the variable for use in the script.

Reading from a File

Finally, you can also use the read command to read data stored in a file on the Linux
system. Each call to the readcommand reads a single line of text from the file. When
there are no more lines left in the file, the read command will exit with a non-zero exit
status.

The tricky part of this is getting the data from the file to the read command. The
most common method for doing this is to pipe the result of the cat command of the

file directly to a while command that contains the readcommand. Here's an example
of how to do this:

$ cat test28
#!/bin/bash
reading data from a file

count=1
cat test | while read line
do

echo “Line $count: $line”

count=$[$count + 1]
done

echo “Finished processing the file”
$

357

The Linux Command Line & Shell Scripting Bible 2™ Edition

$ cat test

The quick brown dog jumps over the lazy fox.

This is a test, this is only a test.

0 Romeo, Romeo! Wherefore art thou Romeo?

$

$./test28

Line 1: The quick brown dog jumps over the lazy fox.
Line 2: This is a test, this is only a test.

Line 3: 0 Romeo, Romeo! Wherefore art thou Romeo?
Finished processing the file

$

The while command loop continues processing lines of the file with
the read command, until the read command exits with a non-zero exit status.

Summary

This chapter showed three different methods for retrieving data from the script user.
Command line parameters allow users to enter data directly on the command line when
they run the script. The script uses positional parameters to retrieve the command line
parameters and assign them to variables.

The shift command allows you to manipulate the command line parameters by
rotating them within the positional parameters. This command allows you to easily
iterate through the parameters without knowing how many parameters are available.

There are three special variables that you can use when working with command line
parameters. The shell sets the$# variable to the number of parameters entered on the
command line. The $* variable contains all of the parameters as a single string, and
the $@ variable contains all of the parameters as separate words. These variables come
in handy when trying to process long parameter lists.

Besides parameters, your script users can also use command line options to pass
information to your script. Command line options are single letters preceded by a dash.
Different options can be assigned to alter the behavior of your script. The bash shell
provides three ways to handle command line options.

The first way is to handle them just like command line parameters. You can iterate
through the options using the positional parameter variables, processing each option as
it appears on the command line.

Another way to handle command line options is with the getopt command. This
command converts command line options and parameters into a standard format that
you can process in your script. The getopt command allows you to specify which
letters it recognizes as options and which options require an additional parameter value.
The getopt command processes the standard command line parameters and outputs
the options and parameters in the proper order.

The final method for handling command line options is via the getopts command
(note that it's plural). Thegetopts command provides more advanced processing of the

358

The Linux Command Line & Shell Scripting Bible 2™ Edition

command line parameters. It allows for multi-value parameters, along with identifying
options not defined by the script.

An interactive method to obtain data from your script users is the read command.
The read command allows your scripts to query users for information and wait.
The read command places any data entered by the script user into one or more
variables, which you can use within the script.

Several options are available for the read command that allow you to customize the
data input into your script, such as using hidden data entry, applying timed data entry,
and requesting a specific number of input characters.

In the next chapter, we look further into how bash shell scripts output data. So far,
you've seen how to display data on the monitor and redirect it to a file. Next, we explore
a few other options that you have available not only to direct data to specific locations
but also to direct specific types of data to specific locations. This will help make your
shell scripts look professional!

Chapter 14

Presenting Data

In This Chapter

» Revisiting redirection

« Standard input and output
» Reporting errors

* Throwing away data

» Creating log files

So far the scripts shown in this book display information either by echoing data to the
monitor or by redirecting data to a file. Chapter 10 demonstrated how to redirect the
output of a command to a file. This chapter expands on that topic by showing you how
you can redirect the output of your script to different locations on your Linux system.

Understanding Input and Output

So far, you've seen two methods for displaying the output from your scripts:

359

The Linux Command Line & Shell Scripting Bible 2™ Edition

Chapter 18

Introducing sed and gawk

In This Chapter

» Text manipulation
* The sed editor basics

By far, one of the most common functions that people use shell scripts for is to work
with text files. Between examining log files, reading configuration files, and handling
data elements, shell scripts can help automate the mundane tasks of manipulating any
type of data contained in text files. However, trying to manipulate the contents of text
files using just shell script commands can be somewhat awkward. If you perform any
type of data manipulation in your shell scripts, you'll want to become familiar with
the sed and gawk tools available in Linux. These tools can greatly simplify any data-
handling tasks you need to perform.

Text Manipulation

Chapter 9 showed you how to edit text files using different editor programs available in
the Linux environment. These editors enable you to easily manipulate text contained in
a text file by using simple commands or mouse clicks.

There are times, however, when you'll find yourself wanting to manipulate text in a
text file on the fly, without having to pull out a full-fledged interactive text editor. In

461

The Linux Command Line & Shell Scripting Bible 2™ Edition

these situations, it would be useful to have a simple command line editor that could
easily format, insert, modify, or delete text elements automatically.

The Linux system provides two common tools for doing just that. This section
describes the two most popular command line editors used in the Linux
world, sed and gawk.

The sed Editor

The sed editor is called a stream editor, as opposed to a normal interactive text editor.
In an interactive text editor, such as vim, you interactively use keyboard commands to
insert, delete, or replace text in the data. A stream editor edits a stream of data based
on a set of rules you supply ahead of time, before the editor processes the data.

The sed editor can manipulate data in a data stream based on commands you either
enter into the command line or store in a command text file. It reads one line of data at
a time from the input, matches that data with the supplied editor commands, changes
data in the stream as specified in the commands, and then outputs the new data
toSTDOUT. After the stream editor matches all of the commands against a line of data, it
reads the next line of data and repeats the process. After the stream editor processes all
of the lines of data in the stream, it terminates.

Because the commands are applied sequentially line by line, the sed editor has to
make only one pass through the data stream to make the edits. This makes
the sed editor much faster than an interactive editor, and allows you to quickly make
changes to data in a file on-the-fly.

The format for using the sed command is:

sed options script file

The options parameters allow you to customize the behavior of the sed command,
and include the options shown inTable 18.1.

Table 18.1 The sed Command Options
‘ ‘Option ‘ ‘Description ‘ ‘

‘- e script HAdd commands specified in the script to the commands run while processing the input. H

‘- f file HAdd the commands specified in the file to the commands run while processing the input. ‘

“- n HDon't produce output for each command, but wait for the print command. ”

The script parameter specifies a single command to apply against the stream data. If
more than one command is required, you must use either the -e option to specify them
in the command line or the -f option to specify them in a separate file. Numerous
commands are available for manipulating data. We'll examine some of the basic
commands used by the sed editor later in this chapter, and then look at some of the
more advanced commands in Chapter 20.

Defining an Editor Command in the Command Line

By default, the sed editor applies the specified commands to the STDIN input stream.
This allows you to pipe data directly to the sed editor for processing. Here's a quick
example demonstrating how to do this:

462

The Linux Command Line & Shell Scripting Bible 2™ Edition

$ echo “This is a test” | sed ‘s/test/big test/’

This is a big test

$

This example uses the s command in the sed editor. The s command substitutes a
second text string for the first text string pattern specified between the forward slashes.
In this example, the words big test were substituted for the word test.

When you run this example, it should display the results almost instantaneously.
That's the power of using thesed editor. You can make multiple edits to data in about
the same time it takes for some of the interactive editors just to start up.

Of course, this simple test just edited one line of data. You should get the same
speedy results when editing complete files of data:

$ cat datal

The quick brown fox jumps over the lazy dog.

The quick brown fox jumps over the lazy dog.

The quick brown fox jumps over the lazy dog.

The quick brown fox jumps over the lazy dog.

$

$ sed ‘s/dog/cat/’ datal

The quick brown fox jumps over the lazy cat.

The quick brown fox jumps over the lazy cat.

The quick brown fox jumps over the lazy cat.

The quick brown fox jumps over the lazy cat.

$

The sed command executes and returns the data almost instantaneously. As it
processes each line of data, the results are displayed. You'll start seeing results before
the sed editor completes processing the entire file.

It's important to note that the sed editor doesn't modify the data in the text file itself.
It only sends the modified text to STDOUT. If you look at the text file, it still contains the
original data:

$ cat datal

The quick brown fox jumps over the lazy dog.

The quick brown fox jumps over the lazy dog.

The quick brown fox jumps over the lazy dog.

The quick brown fox jumps over the lazy dog.

$

Using Multiple Editor Commands in the Command
Line
To execute more than one command from the sed command line, just use the -
e option:

$ sed -e ‘s/brown/green/; s/dog/cat/’ datal

The quick green fox jumps over the lazy cat.

The quick green fox jumps over the lazy cat.
The quick green fox jumps over the lazy cat.

463

The Linux Command Line & Shell Scripting Bible 2™ Edition

The quick green fox jumps over the lazy cat.

$

Both commands are applied to each line of data in the file. The commands must be
separated with a semicolon, and there shouldn't be any spaces between the end of the
command and the semicolon.

Instead of using a semicolon to separate the commands, you can use the secondary
prompt in the bash shell. Just enter the first single quotation mark to open the script,
and bash will continue to prompt you for more commands until you enter the closing
quotation mark:

$ sed -e

> s/brown/green/

> s/fox/elephant/

> s/dog/cat/’ datal

The quick green elephant jumps over the lazy cat.

The quick green elephant jumps over the lazy cat.

The quick green elephant jumps over the lazy cat.

The quick green elephant jumps over the lazy cat.

$

You must remember to finish the command on the same line that the closing single
quotation mark appears. Once the bash shell detects the closing quotation mark, it will
process the command. Once it starts, the sed command applies each command you
specified to each line of data in the text file.

Reading Editor Commands from a File

Finally, if you have lots of sed commands you want to process, it is often easier to just
store them in a separate file. Use the - option to specify the file in the sed command:

$ cat scriptl

s/brown/green/

s/fox/elephant/

s/dog/cat/

$

$ sed -f scriptl datal

The quick green elephant jumps over the lazy cat.

The quick green elephant jumps over the lazy cat.

The quick green elephant jumps over the lazy cat.

The quick green elephant jumps over the lazy cat.

$

In this case, you don't put a semicolon after each command. The sed editor knows
that each line contains a separate command. As with entering commands on the
command line, the sed editor reads the commands from the specified file and applies
them to each line in the data file.

We'll be looking at some other sed editor commands that will come in handy for
manipulating data in the “The sedEditor Basics” section. Before that, let's take a quick
look at the other Linux data editor.

464

The Linux Command Line & Shell Scripting Bible 2™ Edition

bin /bin/sh
Samantha /bin/bash
Timothy /bin/sh

Christine /bin/sh

This concludes the listing

$

As expected, the BEGIN script created the header text, the program script processed
the information from the specified data file (the /etc/passwd file), and the END script
produced the footer text.

This gives you a small taste of the power available when you use simple gawk scripts.
Chapter 21 describes some more basic programming principles available for
your gawk scripts, along with some even more advanced programming concepts you
can use in your gawk program scripts to create professional looking reports from even
the most cryptic data files.

The sed Editor Basics

The key to successfully using the sed editor is to know its myriad of commands and
formats, which help you customize your text editing. This section describes some of the
basic commands and features you can incorporate into your script to start using
the sed editor.

More Substitution Options

You've already seen how to use the s command to substitute new text for the text in a
line. However, a few additional options are available for the substitute command that
can help make your life easier.

Substitution Flags

There's a caveat to how the substitute command replaces matching patterns in the
text string. Watch what happens in this example:

$ cat datab

This is a test of the test script.

This is the second test of the test script.

$

$ sed ‘s/test/trial/’ datab

This is a trial of the test script.

This is the second trial of the test script.

$

The substitute command works fine in replacing text in multiple lines, but by
default, it only replaces the first occurrence in each line. To get

471

The Linux Command Line & Shell Scripting Bible 2™ Edition

the substitute command to work on different occurrences of the text, you must use
asubstitution flag. The substitution flag is set after the substitution command strings:
s/pattern/replacement/flags

There are four types of substitution flags available:

* A number, indicating the pattern occurrence for which new text should be
substituted.

* g—Indicates that new text should be substituted for all occurrences of the
existing text.
» p—Indicates that the contents of the original line should be printed.
* w file—Write the results of the substitution to a file.
In the first type of substitution, you can specify which occurrence of the matching
pattern the sed editor should substitute new text for:
$ sed ‘s/test/trial/2’ datab
This is a test of the trial script.
This is the second test of the trial script.
$
As a result of specifying a 2 as the substitution flag, the sed editor only replaces the
pattern in the second occurrence in each line. The g substitution flag enables you to
replace every occurrence of the pattern in the text:
$ sed ‘s/test/trial/g’ data5
This is a trial of the trial script.
This is the second trial of the trial script.
$
The p substitution flag prints a line that contains a matching pattern in the substitute
command. This is most often used in conjunction with the -n sed option:
$ cat datab
This is a test line.
This is a different line.
$
$ sed -n ‘s/test/trial/p’ datab
This is a trial line.
$
The -n option suppresses output from the sed editor. However, the p substitution flag
outputs any line that has been modified. Using the two in combination produces output
only for lines that have been modified by the substitute command.
The w substitution flag produces the same output but stores the output in the
specified file:
$ sed ‘s/test/trial/w test’ data6
This is a trial line.
This is a different line.
$
$ cat test
This is a trial line.

$

472

The Linux Command Line & Shell Scripting Bible 2™ Edition

The normal output of the sed editor appears in STDOUT, but only the lines that
include the matching pattern are stored in the specified output file.

Replacement Characters

There are times when you run across characters in text strings that aren't easy to use in
the substitution pattern. One popular example in the Linux world is the forward slash.

Substituting pathnames in a file can get awkward. For example, if you wanted to
substitute the C shell for the bash shell in the /etc/passwd file, you'd have to do this:

$ sed ‘s/\/bin\/bash/\/bin\/csh/’ /etc/passwd

Because the forward slash is used as the string delimiter, you must use a backslash to
escape it if it appears in the pattern text. This often leads to confusion and mistakes.

To solve this problem, the sed editor allows you to select a different character for the
string delimiter in the substitute command:
$ sed ‘s!/bin/bash!/bin/csh!’ /etc/passwd

In this example, the exclamation point is used for the string delimiter, making the
pathnames much easier to read and understand.

Using Addresses

By default, the commands you use in the sed editor apply to all lines of the text data. If
you only want to apply a command to a specific line, or a group of lines, you must
use line addressing.

There are two forms of line addressing in the sed editor:

* A numeric range of lines

+ A text pattern that filters out a line
Both forms use the same format for specifying the address:
[address]command
You can also group more than one command together for a specific address:
address {

commandl
command?2

command3

}
The sed editor applies each of the commands you specify only to lines that match the
address specified.

This section demonstrates wusing both of these addressing techniques in
your sed editor scripts.

Numeric Line Addressing

473

The Linux Command Line & Shell Scripting Bible 2™ Edition

When using numeric line addressing, you reference lines using their line position in the
text stream. The sededitor assigns the first line in the text stream as line number one
and continues sequentially for each new line.

The address you specify in the command can be a single line number or a range of
lines specified by a starting line number, a comma, and an ending line number. Here's
an example of specifying a line number to which the sedcommand will be applied:

$ sed ‘2s/dog/cat/’ datal

The quick brown fox jumps over the lazy dog

The quick brown fox jumps over the lazy cat

The quick brown fox jumps over the lazy dog

The quick brown fox jumps over the lazy dog

$

The sed editor modified the text only in line two per the address specified. Here's
another example, this time using a range of line addresses:

$ sed ‘2,3s/dog/cat/’ datal

The quick brown fox jumps over the lazy dog

The quick brown fox jumps over the lazy cat

The quick brown fox jumps over the lazy cat

The quick brown fox jumps over the lazy dog

$

If you want to apply a command to a group of lines starting at some point within the
text, but continuing to the end of the text, you can use the special address, the dollar
sign:

$ sed ‘2,%$s/dog/cat/’ datal

The quick brown fox jumps over the lazy dog

The quick brown fox jumps over the lazy cat

The quick brown fox jumps over the lazy cat

The quick brown fox jumps over the lazy cat

$

Because you may not know how many lines of data are in the text, the dollar sign
often comes in handy.

Using Text Pattern Filters

The other method of restricting which lines a command applies to is a bit more
complicated. The sed editor allows you to specify a text pattern that it uses to filter
lines for the command. The format for this is:

/pattern/command

You must encapsulate the pattern you specify in forward slashes. The sed editor
applies the command only to lines that contain the text pattern that you specify.

For example, if you want to change the default shell for only the user Samantha, you'd
use the sed command:

$

$ grep Samantha /etc/passwd

Samantha:x:1001:1002:Samantha,4,, :/home/Samantha:/bin/bash

474

The Linux Command Line & Shell Scripting Bible 2™ Edition

$
$ sed ‘/Samantha/s/bash/csh/’ /etc/passwd
root:x:0:0:root:/root:/bin/bash

Samantha:x:1001:1002:Samantha,4,,:/home/Samantha:/bin/csh

Timothy:x:1002:1005: :/home/Timothy:/bin/sh

Christine:x:1003:1006::/home/Christine:/bin/sh

$

The command was only applied to the line with the matching text pattern. While using
a fixed text pattern may be wuseful for filtering specific values, as in
the userid example, it's somewhat limited in what you can do with it. The sed editor
uses a feature called regular expressions in text patterns to allow you to create patterns
that get pretty involved.

Regular expressions allow you to create advanced text pattern-matching formulas to
match all sorts of data. These formulas combine a series of wildcard characters, special
characters, and fixed text characters to produce a concise pattern that can match just
about any text situation. Regular expressions are one of the scarier parts of shell script
programming and Chapter 19 covers them in great detail.

Grouping Commands

If you need to perform more than one command on an individual line, group the
commands together using braces. Thesed editor will process each command listed on
the address line(s):

$ sed ‘2{

> s/fox/elephant/

> s/dog/cat/

> }' datal

The quick brown fox jumps over the lazy dog.

The quick brown elephant jumps over the lazy cat.

The quick brown fox jumps over the lazy dog.

The quick brown fox jumps over the lazy dog.

$

Both commands are processed against the address. And of course, you can also
specify an address range before the grouped commands:

$ sed ‘3,9%{

> s/brown/green/

> s/lazy/active/

> }' datal

The quick brown fox jumps over the lazy dog.

The quick brown fox jumps over the lazy dog.

The quick green fox jumps over the active dog.

The quick green fox jumps over the active dog.

$

The sed editor applies all of the commands to all of the lines in the address range.

475

The Linux Command Line & Shell Scripting Bible 2™ Edition

Deleting Lines

The text substitution command isn't the only command available in the sed editor. If
you need to delete specific lines of text in a text stream, there's the delete command.

The delete command, d, pretty much does what it says. It will delete any text lines
that match the addressing scheme supplied. Be careful with the delete command,
because if you forget to include an addressing scheme, all of the lines will be deleted
from the stream:

$ cat datal

The quick brown fox jumps over the lazy dog

The quick brown fox jumps over the lazy dog

The quick brown fox jumps over the lazy dog

The quick brown fox jumps over the lazy dog

$ sed ‘d’ datal

$

The delete command is obviously most useful when used in conjunction with a
specified address. This allows you to delete specific lines of text from the data stream,
either by line number:

$ sed ‘3d’ data7

This is line number 1.

This is line number 2.

This is 1line number 4.

$
or by a specific range of lines:

$ sed ‘2,3d’ data7

This is 1line number 1.

This is line number 4.

$
or by using the special end-of-file character:

$ sed ‘3,$d’ data7

This is 1line number 1.

This is line number 2.

$
The pattern-matching feature of the sed editor also applies to the delete command:

$ sed ‘/number 1/d’ data7

This is line number 2.

This is line number 3.

This is 1line number 4.

$

The sed editor removes the line containing text that matches the pattern you specify.

Note

Remember that the sed editor doesn't touch the original file. Any lines you delete are only
gone from the output of the sed editor. The original file still contains the “deleted” lines.

476

The Linux Command Line & Shell Scripting Bible 2™ Edition

You can also delete a range of lines using two text patterns, but be careful if you do
this. The first pattern you specify “turns on” the line deletion, and the second pattern
“turns off” the line deletion. The sed editor deletes any lines between the two specified
lines (including the specified lines):

$ sed ‘/1/,/3/d’ datab

This is line number 4.

$

In addition, you need to be careful, as the delete feature will “turn on” whenever
the sed editor detects the start pattern in the data stream. This may produce an
unexpected result:

$ cat data8

This is line number

This is line number

This is line number

This is line number 4.

This is line number 1 again.

This is text you want to keep.

This is the last line in the file.

$

$ sed ‘/1/,/3/d’ data7

This is line number 4.

$

The second occurrence of a line with the number 1 in it triggered
the delete command again, deleting the rest of the lines in the data stream, as the
stop pattern wasn't recognized. Of course, the other obvious problem occurs if you
specify a stop pattern that never appears in the text:

$ sed ‘/1/,/5/d’ data8

$

Because the delete features “turned on” at the first pattern match, but never found
the end pattern match, the entire data stream was deleted.

w N =

Inserting and Appending Text

As you would expect, like any other editor, the sed editor allows you to insert and
append text lines to the data stream. The difference between the two actions can be
confusing:

* The insert command (i) adds a new line before the specified line.

* The append command (a) adds a new line after the specified line.

What's confusing about these two commands is their formats. You can't use these
commands on a single command line. You must specify the line to insert or append on a
separate line by itself. The format for doing this is:

sed ‘[address]command\

new line’

477

The Linux Command Line & Shell Scripting Bible 2™ Edition

The text innew line appears in the sed editor output in the place you specify.
Remember that when you use theinsert command, the text appears before the data
stream text:

$ echo “Test Line 2" | sed ‘i\Test Line 1’

Test Line 1

Test Line 2

$

And when you use the append command, the text appears after the data stream text:

$ echo “Test Line 2" | sed ‘a\Test Line 1’

Test Line 2

Test Line 1

$

When you use the sed editor from the command line interface prompt, you'll get the
secondary prompt to enter the new line data. You must complete the sed editor
command on this line. Once you enter the ending single quotation mark, the bash shell
will process the command:

$ echo “Test Line 2” | sed ‘i\

> Test Line 1’

Test Line 1

Test Line 2

$

This works well for adding text before or after the text in the data stream, but what
about adding text inside the data stream?

To insert or append data inside the data stream lines, you must use addressing to tell
the sed editor where you want the data to appear. You can specify only a single line
address when using these commands. You can match either a numeric line number or a
text pattern, but you cannot use a range of addresses. This is logical, because you can
only insert or append before or after a single line, and not a range of lines.

The following is an example of inserting a new line before line 3 in the data stream:

$ sed ‘3i\

> This is an inserted line.’ data7

This is 1line number 1.

This is line number 2.

This is an inserted line.

This is line number 3.

This is line number 4.

$

The following is an example of appending a new line after line 3 in the data stream:

$ sed ‘3a\

>This is an appended line.’ data7

This is line number 1.

This is line number 2.

This is line number 3.

This is an appended line.

This is line number 4.

478

$

The Linux Command Line & Shell Scripting Bible 2™ Edition

This uses the same process as the insert command; it just places the new text line
after the specified line number. If you have a multiline data stream, and you want to
append a new line of text to the end of a data stream, just use the dollar sign, which
represents the last line of data:

$ sed ‘$a\

> This is a new line of text.’ data7
line number 1.
line number 2.
line number 3.
line number 4.

a new line of text.

This
This
This
This
This
$
The

This
This
This
This
This
This
$

is
is
is
is
is

same idea applies if you want to add a new line at the beginning of the data
stream. Just insert a new line before line number one.

To insert or append more than one line of text, you must use a backslash on each line
of new text until you reach the last text line where you want to insert or append text:

$ sed ‘1i\

> This is one line of new text.\

> This is another line of new text.’ data7
one line of new text.
another line of new text.

is
is
is
is
is
is

line
line
line
line

number 1.
number 2.
number 3.
number 4.

Both of the specified lines are added to the data stream.

Changing Lines

The change command allows you to change the contents of an entire line of text in the
data stream. It works the same way as the insert and append commands, in that you
must specify the new line separately from the rest of thesed command:
$ sed ‘3c\
> This is a changed line of text.’' data7
line number 1.
line number 2.
a changed line of text.
line number 4.

This
This
This
This
$

is
is
is
is

In this example, the sed editor changes the text in line number 3. You can also use a
text pattern for the address:

$ sed ‘/number 3/c\

> This is a changed line of text.’' data7

479

The Linux Command Line & Shell Scripting Bible 2™ Edition

This is line number 1.

This is line number 2.

This is a changed line of text.

This is line number 4.

$

The text pattern change command will change any line of text in the data stream that
it matches.

$ sed ‘/number 1/c\

> This is a changed line of text.’' data8

This is a changed line of text.

This is line number 2.

This is line number 3.

This is line number 4.

This is a changed line of text.

This is yet another line.

This is the last line in the file.

$

You can use an address range in the change command, but the results may not be
what you expect:

$ sed ‘2,3c\

> This is a new line of text.’' data7

This is line number 1.

This is a new line of text.

This is line number 4.

$

Instead of changing both lines with the text, the sed editor uses the single line of text
to replace both lines.

The transform Command

The transform command (y) is the only sed editor command that operates on a single
character. The transform command uses the format:

[addressly/inchars/outchars/

The transform command performs a one-to-one mapping of the inchars and
the outchars values. The first character in inchars is converted to the first character
in outchars. The second character in inchars is converted to the second character
in outchars. This mapping continues throughout the length of the specified characters.
If theinchars and outchars are not the same length, the sed editor will produce an
error message.

A simple example of using the transform command is:

$ sed ‘y/123/789/' data8

This is 1line number 7.

This is line number 8.

This is 1line number 9.

This is line number 4.

480

The Linux Command Line & Shell Scripting Bible 2™ Edition

This is line number 7 again.

This is yet another line.

This is the last line in the file.

$

As you can see from the output, each instance of the characters specified in
the inchars pattern has been replaced by the character in the same position in
the outchars pattern.

The transform command is a global command; that is, it performs the
transformation on any character found in the text line automatically, without regard to
the occurrence:

$ echo “This 1 is a test of 1 try.” | sed ‘y/123/456/’

This 4 is a test of 4 try.

$

The sed editor transformed both instances of the matching character 1 in the text
line. You can't limit the transformation to a specific occurrence of the character.

Printing Revisited

The “More Substitution Options” section showed you how to use the p flag with the
substitution command to display lines that the sed editor changed. There are three
commands that also can be used to print information from the data stream:

» The lowercase p command to print a text line
» The equal sign (=) command to print line numbers
* The 1 (lowercase L) command to list a line

The following sections look at each of these three printing commands in
the sed editor.

Printing Lines
Like the pflag in the substitution command, the p command prints a line in
the sed editor output. On its own, there's not much excitement:

$ echo “this is a test” | sed ‘p’

this is a test

this is a test

$

All it does is print the data text that you already know is there. The most common use
for the print command is printing lines that contain matching text from a text pattern:

$ sed -n ‘/number 3/p’ data7

This is line number 3.

$

By using the -n option on the command line, you can suppress all of the other lines
and only print the line that contains the matching text pattern.

You can also use this as a quick way to print a subset of lines in a data stream:

$ sed -n ‘2,3p’ data7

481

The Linux Command Line & Shell Scripting Bible 2™ Edition

This is line number 2.
This is line number 3.

$

You can also use the print command when you need to see a line before it gets
altered, such as with thesubstitution or change command. You can create a script
that displays the line before it's changed:

$ sed -n ‘/3/{

p

s/line/test/p

}' data7

This is line number 3.

This is test number 3.

$

This sed editor command searches for lines that contain the number 3, and then
executes two commands. First, the script uses the p command to print the original
version of the line; then it uses the s command to substitute text, along with the p flag
to print the resulting text. The output shows both the original line text and the new line
text.

Printing Line Numbers

The equal sign command prints the current line number for the line within the data
stream. Line numbers are determined by using the newline character in the data
stream. Each time a newline character appears in the data stream, the sed editor
assumes that it terminates a line of text:

$ sed ‘=’ datal

1

The quick brown fox jumps over the lazy dog.
2

The quick brown fox jumps over the lazy dog.
3

The quick brown fox jumps over the lazy dog.
4

The quick brown fox jumps over the lazy dog.
$

The sed editor prints the line number before the actual line of text. The equal
sign command comes in handy if you're searching for a specific text pattern in the data
stream:

$ sed -n ‘/number 4/{

p
}' data7

4
This is line number 4.

$

482

The Linux Command Line & Shell Scripting Bible 2™ Edition

By using the -n option you can have the sed editor display only both the line number
and text for the line that contains the matching text pattern.

Listing Lines

The list command (1) allows you to print both the text and nonprintable ASCII
characters in a data stream. Any nonprintable characters are shown using either their
octal values, preceded by a backslash, or the standard C-style nomenclature for
common nonprintable characters, such as \t for tab characters:

$ cat data9
This line contains tabs.
$

$ sed -n ‘1’ data9

This\tline\tcontains\ttabs.$

$

The tab character locations are shown with the \'t nomenclature. The dollar sign at
the end of the line indicates the newline character. If you have a data stream that
contains an escape character, the 1ist command displays it using the octal code:

$ cat datalo

This line contains an escape character

$

$ sed -n ‘1’ datalo

This line contains an escape character \033[44m$

$

The datalo0 text file contains an escape control code (see Chapter 17) to change the
display color. When you use the cat command to display the text file, you don't see the
escape control code; it just changes the color of the display.

However, using the 1ist command, you can display the escape control code used.
The \033 is the octal value of the ASCII code for the escape key.

Using Files with sed

The substitution command contains flags that allow you to work with files. There are
also regular sed editor commands that let you do that without having to substitute text.

Writing to a File

The w command is used to write lines to a file. The format for the w command is:

[address]w filename

The filename can be specified as either a relative or absolute pathname, but in
either case, the person running the sed editor must have write permissions for the file.
The address can be any type of addressing method used insed, such as a single line
number, a text pattern, or a range of line numbers or text patterns.

The following is an example that prints only the first two lines of a data stream to a
text file:

483

The Linux Command Line & Shell Scripting Bible 2™ Edition

$ sed ‘1,2w test’ data7

This is 1line number 1.

This is line number 2

This is 1line number 3.

This is line number 4

$

$ cat test

This is line number 1.

This is line number 2.

$

Of course, if you don't want the lines to display on STDOUT, you can use the -n option
for the sed command.

This is a great tool to use if you need to create a data file from a master file on the
basis of common text values, such as those in a mailing list:

$ cat datall

Blum, Katie Chicago, IL

Mullen, Riley West Lafayette, IN

Snell, Haley Ft. Wayne, IN

Woenker, Matthew Springfield, IL
Wisecarver, Emma Grant Park, IL
$

$ sed -n ‘/IN/w INcustomers’ datall

$

$ cat INcustomers

Mullen, Riley West Lafayette, IN

Snell, Haley Ft. Wayne, IN

$

The sed editor writes to a destination file only the data lines that contain the text
pattern.

Reading Data from a File

You've already seen how to insert data into and append text to a data stream from
the sed command line. The readcommand (r) allows you to insert data contained in a
separate file.

The format of the read command is:

[address]r filename

The filename parameter specifies either an absolute or relative pathname for the
file that contains the data. You can't use a range of addresses for the read command.
You can only specify a single line number or text pattern address. The sed editor inserts
the text from the file after the address.

$ cat datal2

This is an added line.

This is the second added line.

$

484

The Linux Command Line & Shell Scripting Bible 2™ Edition

$ sed ‘3r datal2’ data7

This is 1line number 1.

This is 1line number 2.

This is 1line number 3.

This is an added line.

This is the second added line.

This is 1line number 4.

$

The sed editor inserts into the data stream all of the text lines in the data file. The
same technique works when using a text pattern address:

$ sed ‘/number 2/r datal2’ data7

This is 1line number 1.

This is 1line number 2.

This is an added line.

This is the second added line.

This is 1line number 3.

This is line number 4.

$

If you want to add text to the end of a data stream, just use the dollar sign address
symbol:

$ sed ‘$r datal2’ data7

This is 1line number 1.

This is 1line number 2.

This is 1line number 3.

This is line number 4.

This is an added line.

This is the second added line.

$

A cool application of the read command is to use it in conjunction with
a delete command to replace a placeholder in a file with data from another file. For
example, suppose that you had a form letter stored in a text file that looked like this:

$ cat letter

Would the following people:

LIST

please report to the office.

$

The form letter uses the generic placeholder LIST in place of a list of people. To insert
the list of people after the placeholder, all you need to do is use the read command.
However, this still leaves the placeholder text in the output. To remove that, just use
the delete command. The result looks like this:

$ sed ‘/LIST/{

> r datall

> d

> }' letter

Would the following people:

485

The Linux Command Line & Shell Scripting Bible 2™ Edition

Blum, Katie Chicago, IL
Mullen, Riley West Lafayette, IN
Snell, Haley Ft. Wayne, IN

Woenker, Matthew Springfield, IL
Wisecarver, Emma Grant Park, IL
please report to the office.

$

Now the placeholder text is replaced with the list of names from the data file.

Summary

While shell scripts can do a lot of work on their own, it's often difficult to manipulate
data with just a shell script. Linux provides two handy utilities to help out with handling
text data. The sed editor is a stream editor that quickly processes data on the fly as it
reads it. You must provide the sed editor with a list of editing commands, which it
applies to the data.

The gawk program is a utility from the GNU organization that mimics and expands on
the functionality of the Unixawk program. The gawk program contains a built-in
programming language that you can use to write scripts to handle and process data. You
can use the gawk program to extract data elements from large data files and output
them in just about any format you desire. This makes processing large log files a snap,
as well as creating custom reports from data files.

A crucial element of using both the sed and gawk programs is knowing how to use
regular expressions. Regular expressions are key to creating customized filters for
extracting and manipulating data in text files. The next chapter dives into the often
misunderstood world of regular expressions, showing you how to build regular
expressions for manipulating all types of data.

486

The Linux Command Line & Shell Scripting Bible 2™ Edition

Chapter 19

Regular Expressions

In This Chapter

» Defining regular expressions
» Looking at the basics

» Extending our patterns

» Creating expressions

The key to successfully working with the sed editor and the gawk program in your shell
script is your comfort using regular expressions. This is not always an easy thing to do,
as trying to filter specific data from a large batch of data can (and often does) get
complicated. This chapter describes how to create regular expressions in both the sed
editor and the gawk program that can filter out just the data you need.

What Are Regular Expressions?

487

The Linux Command Line & Shell Scripting Bible 2™ Edition

The first step to understanding regular expressions is to define just exactly what they
are. This section explains what a regular expression is and describes how Linux uses
regular expressions.

A Definition

A regular expression is a pattern template you define that a Linux utility uses to filter
text. A Linux utility (such as the sed editor or the gawk program) matches the regular
expression pattern against data as that data flows into the utility. If the data matches
the pattern, it's accepted for processing. If the data doesn't match the pattern, it's
rejected. This is illustrated in Figure 19.1.

Figure 19.1 Matching data against a regular expression pattern
| data stream |—> —>| matching data |

reqular
expression

Il

rejected data

The regular expression pattern makes use of wildcard characters to represent one or
more characters in the data stream. There are plenty of instances in Linux where you
can specify a wildcard character to represent data that you don't know about. You've
already seen an example of using wildcard characters with the Linux s command for
listing files and directories (see Chapter 3).

The asterisk wildcard character allows you to list only files that match a certain
criteria. For example:

$ s -al da*

-rw-r--r-- 1 rich rich 45 Nov 26 12:42 data
-rw-r--r-- 1 rich rich 25 Dec 4 12:40 data.tst
-rw-r--r-- 1 rich rich 180 Nov 26 12:42 datal
-rw-r--r-- 1 rich rich 45 Nov 26 12:44 data2
-rw-r--r-- 1 rich rich 73 Nov 27 12:31 data3
-rw-r--r-- 1 rich rich 79 Nov 28 14:01 data4d
-rw-r--r-- 1 rich rich 187 Dec 4 09:45 datatest
$

The da* parameter instructs the 1s command to list only the files whose name starts
with da. There can be any number of characters after the da in the filename (including
none). The 1s command reads the information regarding all of the files in the directory
but displays only the ones that match the wildcard character.

488

The Linux Command Line & Shell Scripting Bible 2™ Edition

Regular expression wildcard patterns work in a similar way. The regular expression
pattern contains text and/or special characters that define a template for the sed editor
and the gawk program to follow when matching data. There are different special
characters you can use in a regular expression to define a specific pattern for filtering
data.

Types of Regular Expressions

The biggest problem with using regular expressions is that there isn't just one set of
them. Several different applications use different types of regular expressions in the
Linux environment. These include such diverse applications as programming languages
(Java, Perl, and Python), Linux utilities (such as the sed editor, the gawk program, and
the grep utility), and mainstream applications (such as the MySQL and PostgreSQL
database servers).

A regular expression is implemented using a regular expression engine. A regular
expression engine is the underlying software that interprets reqular expression patterns
and uses those patterns to match text.

In the Linux world, there are two popular regular expression engines:
» The POSIX Basic Regular Expression (BRE) engine
» The POSIX Extended Regular Expression (ERE) engine

Most Linux utilities at a minimum conform to the POSIX BRE engine specifications,
recognizing all of the pattern symbols it defines. Unfortunately, some utilities (such as
the sed editor) only conform to a subset of the BRE engine specifications. This is due to
speed constraints, as the sed editor attempts to process text in the data stream as
quickly as possible.

The POSIX ERE engine is often found in programming languages that rely on regular
expressions for text filtering. It provides advanced pattern symbols as well as special
symbols for common patterns, such as matching digits, words, and alphanumeric
characters. The gawk program uses the ERE engine to process its regular expression
patterns.

Because there are so many different ways to implement regular expressions, it's hard
to present a single, concise description of all the possible regular expressions. The
following sections discuss the most commonly found regular expressions and
demonstrate how to use them in the sed editor and gawk program.

Defining BRE Patterns

The most basic BRE pattern is matching text characters in a data stream. This section
demonstrates how you can define text in the regular expression pattern and what to
expect from the results.

Plain Text

489

The Linux Command Line & Shell Scripting Bible 2™ Edition

Chapter 18 demonstrated how to use standard text strings in the sed editor and the
gawk program to filter data. Here's an example to refresh your memory:

$ echo “This is a test” | sed -n ‘/test/p’

This is a test

$ echo “This is a test” | sed -n ‘/trial/p’

$

$ echo “This is a test” | gawk ‘/test/{print $0}’

This is a test

$ echo “This is a test” | gawk ‘/trial/{print $0}’

$

The first pattern defines a single word, test. The sed editor and gawk program scripts
each use their own version of the print command to print any lines that match the
regular expression pattern. Because the echo statement contains the word “test” in the
text string, the data stream text matches the defined regular expression pattern, and
the sed editor displays the line.

The second pattern again defines just a single word, this time the word “trial.”
Because the echo statement text string doesn't contain that word, the regular
expression pattern doesn't match, so neither the sed editor nor the gawk program prints
the line.

You probably already noticed that the regular expression doesn't care where in the
data stream the pattern occurs. It also doesn't matter how many times the pattern
occurs. Once the regular expression can match the pattern anywhere in the text string,
it passes the string along to the Linux utility that's using it.

The key is matching the regular expression pattern to the data stream text. It's
important to remember that reqular expressions are extremely picky about matching
patterns. The first rule to remember is that regular expression patterns are case
sensitive. This means they'll only match patterns with the proper case of characters:

$ echo “This is a test” | sed -n ‘/this/p’

$

$ echo “This is a test” | sed -n ‘/This/p’

This is a test

$

The first attempt failed to match because the word “this” doesn't appear in all
lowercase in the text string, while the second attempt, which uses the uppercase letter
in the pattern, worked just fine.

You don't have to limit yourself to whole words in the regular expression. If the defined
text appears anywhere in the data stream, the regular expression will match the
following:

$ echo “The books are expensive” | sed -n ‘/book/p’

The books are expensive

$

Even though the text in the data stream is books, the data in the stream contains the
regular expression book, so the regular expression pattern matches the data. Of course,
if you try the opposite, the regular expression will fail:

$ echo “The book is expensive” | sed -n ‘/books/p’

490

The Linux Command Line & Shell Scripting Bible 2™ Edition

$
The complete regular expression text didn't appear in the data stream, so the match
failed and the sed editor didn't display the text.

You also don't have to limit yourself to single text words in the regular expression. You
can include spaces and numbers in your text string as well:

$ echo “This is line number 1" | sed -n ‘/ber 1/p’

This is line number 1

$

Spaces are treated just like any other character in the regular expression:
$ echo “This is line numberl” | sed -n ‘/ber 1/p’

$

If you define a space in the regular expression, it must appear in the data stream. You
can even create a regular expression pattern that matches multiple contiguous spaces:

$ cat datal

This is a normal line of text.

This is a line with too many spaces.

$ sed -n ‘/ /p' datal

This is a line with too many spaces.

$

The line with two spaces between words matches the reqular expression pattern. This
is a great way to catch spacing problems in text files!

Special Characters

As you use text strings in your regular expression patterns, there's something you need
to be aware of. There are a few exceptions when defining text characters in a regular
expression. Regular expression patterns assign a special meaning to a few characters. If
you try to use these characters in your text pattern, you won't get the results you were
expecting.

The special characters recognized by regular expressions are:

TSN+ 0)

As the chapter progresses, you'll find out just what these special characters do in a
regular expression. For now, however, just remember that you can't use these
characters by themselves in your text pattern.

If you want to use one of the special characters as a text character, you need
to escape it. When you escape the special characters, you add a special character in
front of it to indicate to the regular expression engine that it should interpret the next
character as a normal text character. The special character that does this is the
backslash character (\).

For example, if you want to search for a dollar sign in your text, just precede it with a
backslash character:

$ cat data2

The cost is $4.00

$ sed -n ‘/\$/p’ data2

491

The Linux Command Line & Shell Scripting Bible 2™ Edition

The cost is $4.00

$

Because the backslash is a special character, if you need to use it in a regular
expression pattern you'll need to escape it as well, producing a double backslash:

$ echo “\ is a special character” | sed -n ‘/\\/p'

\ is a special character

$

Finally, although the forward slash isn't a regular expression special character, if you
use it in your regular expression pattern in the sed editor or the gawk program, you'll
get an error:

$ echo “3 /2" | sed -n ‘///p’

sed: -e expression #1, char 2: No previous regular expression

$

To use a forward slash you'll need to escape that as well:

$ echo “3 / 2” | sed -n ‘/\//p’

3/ 2

$

Now the sed editor can properly interpret the reqular expression pattern, and all is
well.

Anchor Characters

As shown in the “Plain Text” section, by default, when you specify a regular expression
pattern, if the pattern appears anywhere in the data stream, it will match. There are two
special characters you can use to anchor a pattern to either the beginning or the end of
lines in the data stream.

Starting at the Beginning

The caret character () defines a pattern that starts at the beginning of a line of text in
the data stream. If the pattern is located any place other than the start of the line of
text, the regular expression pattern fails.

To use the caret character, you must place it before the pattern specified in the
regular expression:

$ echo “The book store” | sed -n ‘/"book/p’

$

$ echo “Books are great” | sed -n ‘/"Book/p’
Books are great

$

The caret anchor character checks for the pattern at the beginning of each new line of
data, as determined by the newline character:

$ cat data3

This is a test line.

this is another test line.

A line that tests this feature.

492

The Linux Command Line & Shell Scripting Bible 2™ Edition

Yet more testing of this

$ sed -n ‘/"this/p’ data3

this is another test line.

$

As long as the pattern appears at the start of a new line, the caret anchor will catch it.

If you position the caret character in any place other than at the beginning of the
pattern, it will act like a normal character and not as a special character:

$ echo “This " is a test” | sed -n ‘/s “/p’
This " is a test
$

Because the caret character is listed last in the regular expression pattern, the sed
editor uses it as a normal character to match text.

Note

If you need to specify a regular expression pattern using only the caret character, you don't
need to escape it with a backslash. However, if you specify the caret character first,
followed by additional text in the pattern, you'll need to use the escape character before the
caret character.

Looking for the Ending

The opposite of looking for a pattern at the start of a line is looking for it at the end of a
line. The dollar sign ($) special character defines the end anchor. Add this special
character after a text pattern to indicate that the line of data must end with the text
pattern:

$ echo “This is a good book” | sed -n ‘/book$/p’

This is a good book

$ echo “This book is good” | sed -n ‘/book$/p’

$

The problem with an ending text pattern is that you must be careful what you're
looking for:

$ echo “There are a lot of good books” | sed -n ‘/book$/p’

$

Making the word “book” plural at the end of the line means that it no longer matches
the regular expression pattern, even though book is in the data stream. The text pattern
must be the last thing on the line for the pattern to match.

Combining Anchors

There are a couple of common situations where you can combine both the start and end
anchor on the same line. In the first situation, suppose that you want to look for a line of
data containing only a specific text pattern:

$ cat datad

this is a test of using both anchors

I said this is a test

this is a test

493

The Linux Command Line & Shell Scripting Bible 2™ Edition

I'm sure this is a test.

$ sed -n ‘/"this is a test$/p’ data4d

this is a test

$

The sed editor ignores the lines that include other text besides the specified text.

The second situation may seem a little odd at first but is extremely useful. By
combining both anchors in a pattern with no text, you can filter blank lines from the
data stream. Consider this example:

$ cat datas

This is one test line.

This is another test line.

$ sed ‘/"$/d’ datab

This is one test line.

This is another test line.

$

The regular expression pattern that is defined looks for lines that have nothing
between the start and end of the line. Because blank lines contain no text between the
two newline characters, they match the regular expression pattern. The sed editor uses
the d delete command to delete lines that match the regular expression pattern, thus
removing all blank lines from the text. This is an effective way to remove blank lines
from documents.

The Dot Character

The dot special character is used to match any single character except a newline
character. The dot character must match a character, however; if there's no character in
the place of the dot, then the pattern will fail.

Let's take a look at a few examples of using the dot character in a regular expression
pattern:

$ cat datab6

This is a test of a line.

The cat is sleeping.

That is a very nice hat.

This test is at line four.

at ten o'clock we'll go home.

$ sed -n ‘/.at/p’' datab

The cat is sleeping.

That is a very nice hat.

This test is at line four.

$

You should be able to figure out why the first line failed and why the second and third
lines passed. The fourth line is a little tricky. Notice that we matched the at, but there's
no character in front of it to match the dot character. Ah, but there is! In regular
expressions, spaces count as characters, so the space in front of the atmatches the

494

The Linux Command Line & Shell Scripting Bible 2™ Edition

pattern. The fifth line proves this, by putting the at in the front of the line, which fails to
match the pattern.

Character Classes

The dot special character is great for matching a character position against any
character, but what if you want to limit what characters to match? This is called
a character class in regular expressions.

You can define a class of characters that would match a position in a text pattern. If
one of the characters from the character class is in the data stream, it matches the
pattern.

To define a character class, you use square brackets. The brackets should contain any
character that you want to include in the class. You then use the entire class within a
pattern just like any other wildcard character. This takes a little getting used to at first,
but once you catch on it can generate some pretty amazing results.

The following is an example of creating a character class:

$ sed -n ‘/[chlat/p’ datab6

The cat is sleeping.

That is a very nice hat.

$

Using the same data file as in the dot special character example, we came up with a
different result. This time we managed to filter out the line that just contained the
word at. The only words that match this pattern are catand hat. Also notice that the
line that started with at didn't match as well. There must be a character in the
character class that matches the appropriate position.

Character classes come in handy if you're not sure which case a character is in:

$ echo “Yes” | sed -n ‘/[Yyles/p’

Yes

$ echo “yes” | sed -n ‘/[Yyles/p’

yes

$

You can use more than one character class in a single expression:

$ echo “Yes” | sed -n ‘/[Yyl[Eel[Ss]/p’

Yes

$ echo “yEs” | sed -n ‘/[Yyl[Eel[Ss1/p’

yEs

$ echo “yeS” | sed -n ‘/[Yyl[Ee][Ss]l/p’

yeS

$

The regular expression used three character classes to cover both lower and upper
cases for all three character positions.

Character classes don't have to contain just letters; you can use numbers in them as
well:

$ cat data7

495

The Linux Command Line & Shell Scripting Bible 2™ Edition

This 1line doesn't contain a number.

This 1line has 1 number on it.

This 1ine a number 2 on it.

This 1line has a number 4 on it.

$ sed -n ‘/[0123]/p’' data7

This 1line has 1 number on it.

This line a number 2 on it.

$

The regular expression pattern matches any lines that contain the numbers 0, 1, 2, or
3. Any other numbers are ignored, as are lines without numbers in them.

You can combine character classes to check for properly formatted numbers, such as
phone numbers and zip codes. However, when you're trying to match a specific format,
you must be careful. Here's an example of a zip code match gone wrong:

$ cat data8

60633

46201

223001

4353

22203

$ sed -n

>/[0123456789][0123456789]1[0123456789][0123456789][01234567891/p

>' data8

60633

46201

223001

22203

$

This might not have produced the result you were thinking of. It did a fine job of
filtering out the number that was too short to be a zip code, as the last character class
didn't have a character to match against. However, it still passed the six-digit number,
even though we only defined five character classes.

Remember that the regular expression pattern can be found anywhere in the text of
the data stream. There can always be additional characters besides the matching
pattern characters. If you want to ensure that you only match against five numbers, you
need to delineate them somehow, either with spaces, or as in this example, by showing
that they're at the start and end of the line:

$ sed -n *

> /"[0123456789][0123456789]1[0123456789]1[0123456789][0123456789]1%/p

> ' data8

60633

46201

22203

$

Now that's much better! Later in this chapter we look at how to simplify this even
further.

496

The Linux Command Line & Shell Scripting Bible 2™ Edition

One extremely popular use for character classes is parsing words that might be
misspelled, such as data entered from a user form. You can easily create regular
expressions that can accept common misspellings in data:

$ cat data9

I need to have some maintenence done on my car.

I'll pay that in a seperate invoice.

After I pay for the maintenance my car will be as good as new.

$ sed -n ‘

/maint[ealn[aelnce/p

/seplealr[ealte/p

" data9

I need to have some maintenence done on my car.
I'll pay that in a seperate invoice.
After I pay for the maintenance my car will be as good as new.

$

The two sed print commands in this example utilize regular expression character
classes to help catch the misspelled words, maintenance and separate, in the text. The
same regular expression pattern also matches the properly spelled occurrence of
“maintenance.”

Negating Character Classes

In regular expression patterns, you can also reverse the effect of a character class.
Instead of looking for a character contained in the class, you can look for any character
that's not in the class. To do that, just place a caret character at the beginning of the
character class range:

$ sed -n ‘/["chlat/p’ datab6

This test is at line two.

$

By negating the character class, the regular expression pattern matches any
character that's neither a ¢ nor anh, along with the text pattern. Because the space
character fits this category, it passed the pattern match. However, even with the
negation, the character class must still match a character, so the line with the at in the
start of the line still doesn't match the pattern.

Using Ranges

You may have noticed when | showed the zip code example earlier that it was somewhat
awkward having to list all of the possible digits in each character class. Fortunately, you
can use a shortcut so you don't have to do that.

You can use a range of characters within a character class by using the dash symbol.
Just specify the first character in the range, a dash, and then the last character in the
range. The regular expression includes any character that's within the specified
character range, according to the character set used by the Linux system (see Chapter
2).

497

The Linux Command Line & Shell Scripting Bible 2™ Edition

Now you can simplify the zip code example by specifying a range of digits:

$ sed -n ‘/"[0-9][0-9][0-9][0-9][0-9]%$/p’' data8

60633

46201

45902

$

That saved a lot of typing! Each character class will match any digit from 0 to 9. The
pattern will fail if a letter is present anywhere in the data:

$ echo “a8392” | sed -n ‘/"[0-9][0-9][0-9]1[0-9]1[0-9]%/p’

$
$ echo “1839a” | sed -n ‘/"[0-91[0-9][0-9][0-9]1[0-9]1$/p’
$
$ echo “18a92” | sed -n ‘/"[0-9]1[0-9]1[0-9]1[0-9]1[0-9]%$/p’
$

The same technique also works with letters:

$ sed -n ‘/[c-hlat/p’ datab

The cat is sleeping.

That is a very nice hat.

$

The new pattern [c-h]at matches words where the first letter is between the
letter ¢ and the letter h. In this case, the line with only the word at failed to match the
pattern.

You can also specify multiple, noncontinuous ranges in a single character class:

$ sed -n ‘/[a-ch-m]at/p’ datab

The cat is sleeping.

That is a very nice hat.

$

The character class allows the ranges a through ¢, and h through m to appear before
the at text. This range would reject any letters between d and g:

$ echo “I'm getting too fat.” | sed -n ‘/[a-ch-m]lat/p’

$

This pattern rejected the fat text, as it wasn't in the specified range.

Special Character Classes

In addition to defining your own character classes, the BRE contains special character
classes you can use to match against specific types of characters. Table 19.1 describes
the BRE special characters you can use.

Table 19.1 BRE Special Character Classes

‘ ‘Class ‘ ‘Description ‘ ‘

H[[:alpha:]] HMatch any alphabetical character, either upper or lower case. H

H[[:alnum:]] HMatch any alphanumeric character 0-9, A-Z, or a—z.

H
“[[:blank:]1] HMatch a space or Tab character. ”

498

The Linux Command Line & Shell Scripting Bible 2™ Edition

‘[[:digit:]] HMatch a numerical digit from 0 through 9.

‘[[:lower:]] HMatch any lowercase alphabetical character a—z.

‘[[:punct:]] HMatch a punctuation character.

‘[[:space:]] HMatch any whitespace character: space, Tab, NL, FF, VT, CR.

|
|
‘[[:print:]] HMatch any printable character. ‘
|
|
|

‘[[:upper:11] HMatch any uppercase alphabetical character A—Z.

You use the special character classes just as you would a normal character class in
your regular expression patterns:
$ echo “abc” | sed -n ‘/[[:digit:11/p’

$

$ echo “abc” | sed -n ‘/[[:alpha:11/p’
abc

$ echo “abcl23” | sed -n ‘/[[:digit:]]1/p’
abcl23

$ echo “This is, a test” | sed -n ‘/[[:punct:]]1/p’

This is, a test

$ echo “This is a test” | sed -n “/[[:punct:]]/p’

$

Using the special character classes is an easy way to define ranges. Instead of having
to use a range [0-9], you can just use [[:digit:]].

The Asterisk

Placing an asterisk after a character signifies that the character must appear zero or
more times in the text to match the pattern:

$ echo “ik” | sed -n ‘/ie*k/p’

ik

$ echo “iek” | sed -n ‘/ie*k/p’

iek

$ echo “ieek” | sed -n ‘/ie*k/p’

ieek

$ echo “ieeek” | sed -n ‘/ie*k/p’

ieeek

$ echo “ieeeek” | sed -n ‘/ie*k/p’

ieeeek

$

This pattern symbol is commonly used for handling words that have a common
misspelling or variations in language spellings. For example, if you need to write a script
that may be used in either American or British English, you could write:

$ echo “I'm getting a color TV” | sed -n ‘/colou*r/p’
I'm getting a color TV

$ echo “I'm getting a colour TV” | sed -n ‘/colou*r/p’
I'm getting a colour TV

$

499

The Linux Command Line & Shell Scripting Bible 2™ Edition

The u* in the pattern indicates that the letter u may or may not appear in the text to
match the pattern. Similarly, if you know of a word that is commonly misspelled, you
can accommodate it by using the asterisk:

$ echo “I ate a potatoe with my lunch.” | sed -n ‘/potatoe*/p’
I ate a potatoe with my lunch.

$ echo “I ate a potato with my lunch.” | sed -n ‘/potatoe*/p’
I ate a potato with my lunch.

$

Placing an asterisk next to the possible extra letter allows you to accept the
misspelled word.

Another handy feature is combining the dot special character with the asterisk special
character.This combination provides a pattern to match any number of any characters.
It's often used between two text strings that may or may not appear next to each other
in the data stream:

$ echo “this is a regular pattern expression” | sed -n

> /regular.*expression/p’

this is a regular pattern expression

$

Using this pattern, you can easily search for multiple words that may appear
anywhere in a line of text in the data stream.

The asterisk can also be applied to a character class. This allows you to specify a
group or range of characters that can appear more than once in the text:

$ echo “bt” | sed -n ‘/b[ae]*t/p’

bt

$ echo “bat” | sed -n ‘/b[ael*t/p’

bat

$ echo “bet” | sed -n ‘/bl[ael*t/p’

bet

$ echo “btt” | sed -n ‘/b[ae]l*t/p’

btt

$

$ echo “baat” | sed -n ‘/blae]*t/p’

baat

$ echo “baaeeet” | sed -n ‘/bl[ae]*t/p’

baaeeet

$ echo “baeeaeeat” | sed -n ‘/bl[ae]*t/p’

baeeaeeat

$ echo “baakeeet” | sed -n ‘/bl[ae]*t/p’

$

As long as theaandecharacters appear in any combination between
the b and t characters (including not appearing at all), the pattern matches. If any other
character outside of the defined character class appears, the pattern match fails.

{

500

The Linux Command Line & Shell Scripting Bible 2™ Edition

Extended Regular Expressions

The POSIX ERE patterns include a few additional symbols that are used by some Linux
applications and utilities. The gawk program recognizes the ERE patterns, but the sed
editor doesn't.

Caution

It's important to remember that there is a difference between the regular expression engines in
the sed editor and the gawk program. The gawk program can use most of the extended regular
expression pattern symbols, and it can provide some additional filtering capabilities that the sed
editor doesn't have. However, because of this, it is often slower in processing data streams.
This section describes the more commonly found ERE pattern symbols that you can
use in your gawk program scripts.

The Question Mark

The question mark is similar to the asterisk, but with a slight twist. The question mark
indicates that the preceding character can appear zero or one time, but that's all. It
doesn't match repeating occurrences of the character:

$ echo “bt” | gawk ‘/be?t/{print $0}’

bt

$ echo “bet” | gawk ‘/be?t/{print $0}’

bet

$ echo “beet” | gawk ‘/be?t/{print $0}’

$

$ echo “beeet” | gawk ‘/be?t/{print $0}’

$

If the e character doesn't appear in the text, or as long as it appears only once in the
text, the pattern matches.

As with the asterisk, you can use the question mark symbol along with a character
class:

$ echo “bt” | gawk ‘/bl[ae]?t/{print $0}’

bt

$ echo “bat” | gawk ‘/b[ae]?t/{print $0}’
bat

$ echo “bot” | gawk ‘/b[ae]?t/{print $0}’
$

$ echo “bet” | gawk ‘/b[ae]?t/{print $0}’
bet

$ echo “baet” | gawk ‘/b[ae]?t/{print $0}’
$

$ echo “beat” | gawk ‘/b[ae]?t/{print $0}’
$

$ echo “beet” | gawk ‘/b[ae]?t/{print $0}’
$

501

The Linux Command Line & Shell Scripting Bible 2™ Edition

If zero or one character from the character class appears, the pattern match passes.
However, if both characters appear, or if one of the characters appears twice, the
pattern match fails.

The Plus Sign

The plus sign is another pattern symbol that's similar to the asterisk, but with a different
twist than the question mark. The plus sign indicates that the preceding character can
appear one or more times, but must be present at least once. The pattern doesn't match
if the character is not present:

$ echo “beeet” | gawk ‘/be+t/{print $0}’

beeet

$ echo “beet” | gawk ‘/be+t/{print $0}’

beet

$ echo “bet” | gawk ‘/be+t/{print $0}’

bet

$ echo “bt” | gawk ‘/be+t/{print $0}’

$

If the e character is not present, the pattern match fails. The plus sign also works with
character classes, the same way as the asterisk and question mark do:

$ echo “bt” | gawk ‘/bl[ae]+t/{print $0}’

$

$ echo “bat” | gawk ‘/b[ae]+t/{print $0}’

bat

$ echo “bet” | gawk ‘/b[ae]+t/{print $0}’

bet

$ echo “beat” | gawk ‘/b[ae]+t/{print $0}’

beat

$ echo “beet” | gawk ‘/b[ae]+t/{print $0}’

beet

$ echo “beeat” | gawk ‘/b[ae]+t/{print $0}’

beeat

$

This time if either character defined in the character class appears, the text matches
the specified pattern.

Using Braces

Curly braces are available in ERE to allow you to specify a limit on a repeatable regular
expression. This is often referred to as an interval. You can express the interval in two
formats:

* m- The regular expression appears exactly m times.
* m,n - The regular expression appears at least m times, but no more than n times.

502

The Linux Command Line & Shell Scripting Bible 2™ Edition

This feature allows you to fine-tune exactly how many times you allow a character (or
character class) to appear in a pattern.

Caution

By default, the gawk program doesn't recognize regular expression intervals. You must specify
the --re-interval command line option for the gawk program to recognize regular expression
intervals.

Here's an example of using a simple interval of one value:

$ echo “bt” | gawk --re-interval ‘/be{l}t/{print $0}’

$

$ echo “bet” | gawk --re-interval ‘/be{l}t/{print $0}’
bet

$ echo “beet” | gawk --re-interval ‘/be{1l}t/{print $0}’
$

By specifying an interval of one, you restrict the number of times the character can be
present for the string to match the pattern. If the character appears more times, the
pattern match fails.

There are lots of times when specifying the lower and upper limit comes in handy:

$ echo “bt” | gawk --re-interval ‘/be{l,2}t/{print $0}’

$

$ echo “bet” | gawk --re-interval ‘/be{l,2}t/{print $0}’

bet

$ echo “beet” | gawk --re-interval ‘/be{l1,2}t/{print $0}’

beet

$ echo “beeet” | gawk --re-interval ‘/be{l,2}t/{print $0}’

$

In this example, the e character can appear once or twice for the pattern match to
pass; otherwise, the pattern match fails.

The interval pattern match also applies to character classes:

$ echo “bt” | gawk --re-interval ‘/b[ael{l,2}t/{print $0}’

$

$ echo “bat” | gawk --re-interval ‘/bl[ael{l,2}t/{print $0}’

bat

$ echo “bet” | gawk --re-interval ‘/bl[ael{l,2}t/{print $0}’

bet

$ echo “beat” | gawk --re-interval ‘/bl[ael{l,2}t/{print $0}’

beat

$ echo “beet” | gawk --re-interval ‘/bl[ael{l,2}t/{print $0}’

beet

$ echo “beeat” | gawk --re-interval ‘/blae]l{l,2}t/{print $0}’

$

$ echo “baeet” | gawk --re-interval ‘/b[ae]{1,2}t/{print $0}’

$

$ echo “baeaet” | gawk --re-interval ‘/bl[ael{l,2}t/{print $0}’

$

503

The Linux Command Line & Shell Scripting Bible 2™ Edition

This regular expression pattern will match if there are exactly one or two instances of
the lettera orein the text pattern, but it will fail if there are any more in any
combination.

The Pipe Symbol

The pipe symbol allows to you to specify two or more patterns that the regular
expression engine uses in a logicalOR formula when examining the data stream. If any of
the patterns match the data stream text, the text passes. If none of the patterns match,
the data stream text fails.

The format for using the pipe symbol is:

exprl|expr2]...

Here's an example of this:

$ echo “The cat is asleep” | gawk ‘/cat|dog/{print $0}’

The cat is asleep

$ echo “The dog is asleep” | gawk ‘/cat|dog/{print $0}’

The dog is asleep

$ echo “The sheep is asleep” | gawk ‘/cat|dog/{print $0}’

$

This example looks for the regular expression cat or dog in the data stream. You
can't place any spaces within the regular expressions and the pipe symbol, or they'll be
added to the regular expression pattern.

The regular expressions on either side of the pipe symbol can use any regular
expression pattern, including character classes, to define the text:

$ echo “He has a hat.” | gawk ‘/[ch]lat|dog/{print $0}’
He has a hat.
$

This example would match cat, hat, or dog in the data stream text.

Grouping Expressions

Regular expression patterns can also be grouped by using parentheses. When you group
a regular expression pattern, the group is treated like a standard character. You can
apply a special character to the group just as you would to a regular character. For
example:

$ echo “Sat” | gawk ‘/Sat(urday)?/{print $0}’

Sat

$ echo “Saturday” | gawk ‘/Sat(urday)?/{print $0}’

Saturday

$

The grouping of the “urday” ending along with the question mark allows the pattern
to match either the full day name Saturday or the abbreviated name Sat.

It's common to use grouping along with the pipe symbol to create groups of possible
pattern matches:

504

The Linux Command Line & Shell Scripting Bible 2™ Edition

$ echo “cat” | gawk ‘/(c|b)a(b|t)/{print $0}’

cat

$ echo “cab” | gawk ‘/(c|b)a(b|t)/{print $0}’
cab

$ echo “bat” | gawk ‘/(c|b)a(b|t)/{print $0}’
bat

$ echo “bab” | gawk ‘/(c|b)a(b|t)/{print $0}’
bab

$ echo “tab” | gawk ‘/(c|b)a(b|t)/{print $0}’
$

$ echo “tac” | gawk ‘/(c|b)a(b|t)/{print $0}’
$

The pattern (c|b)a(b|t) matches any combination of the letters in the first group
along with any combination of the letters in the second group.

Regular Expressions in Action

Now that you've seen the rules and a few simple demonstrations of using regular
expression patterns, it's time to put that knowledge into action. The following sections
demonstrate some common regular expression examples within shell scripts.

Counting Directory Files

To start things out, let's look at a shell script that counts the executable files that are
present in the directories defined in your PATH environment variable. To do that, you'll
need to parse out the PATH variable into separate directory names. Chapter 5 showed
you how to display the PATH environment variable:

$ echo $PATH

/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:/usr/games:/usr/java/

j2sdkl.4.1 01/bin

$

Your PATH environment variable will differ, depending on where the applications are
located on your Linux system. The key is to recognize that each directory in the PATH is
separated by a colon. To get a listing of directories that you can use in a script, you'll
have to replace each colon with a space. You now recognize that the sed editor can do
just that using a simple regular expression:

$ echo $PATH | sed ‘s/:/ /g’

/usr/local/bin /bin /usr/bin /usr/X11R6/bin /usr/games /usr/java/

j2sdkl.4.1 01/bin

$

Once you've got the directories separated out, you can use them in a
standard for statement (see Chapter 12) to iterate through each directory:

mypath=‘echo $PATH | sed ‘s/:/ /g’

for directory in $mypath

505

The Linux Command Line & Shell Scripting Bible 2™ Edition

do

done

Once you have each directory, you can use the 1ls command to list each file in each
directory, and use another forstatement to iterate through each file, incrementing a
counter for each file.

The final version of the script looks like this:

$ cat countfiles

#!/bin/bash

count number of files in your PATH

mypath=‘echo $PATH | sed ‘s/:/ /g’

count=0

for directory in $mypath
do

check=‘1s $directory’
for item in $check
do
count=$[$count + 1]
done
echo “$directory - $count”

count=0
done
$./countfiles
/usr/local/bin - 79
/bin - 86
/usr/bin - 1502
/usr/X11R6/bin - 175
/usr/games - 2
/usr/java/j2sdkl.4.1 01/bin - 27
$
Now we're starting to see some of the power behind regular expressions!

Validating a Phone Number

The previous example showed how to incorporate the simple regular expression along
with sed to replace characters in a data stream to process data. Often regular
expressions are used to validate data to ensure that data is in the correct format for a
script.

A common data validation application checks phone numbers. Often, data entry forms
request phone numbers, and often customers fail to enter a properly formatted phone
number. In the United States, there are several common ways to display a phone
number:

506

The Linux Command Line & Shell Scripting Bible 2™ Edition

(123)456-7890
(123) 456-7890
123-456-7890
123.456.7890

This leaves four possibilities for how customers can enter their phone number in a
form. The regular expression must be robust enough to be able to handle either
situation.

When building a regular expression, it's best to start on the left-hand side, and build
your pattern to match the possible characters you'll run into. In this example, there may
or may not be a left parenthesis in the phone number. This can be matched by using the
pattern:

\(?

The caret is used to indicate the beginning of the data. Because the left parenthesis is
a special character, you must escape it to use it as a normal character. The question
mark indicates that the left parenthesis may or may not appear in the data to match.

Next comes the three-digit area code. In the United States, area codes start with the
number 2 (no area codes start with the digits 0 or 1), and can go to 9. To match the area
code, you'd use the following pattern:

[2-9]1[6-91{2}

This requires that the first character be a digit between 2 and 9, followed by any two
digits. After the area code, the ending right parenthesis may or may not be there:

\)?

After the area code, there can be a space, no space, a dash, or a dot. You can group
those using a character group along with the pipe symbol:

o 1-1\)

The very first pipe symbol appears immediately after the left parenthesis to match the
no space condition. You must use the escape character for the dot; otherwise, it will be
interpreted to match any character.

Next comes the three-digit phone exchange number. Nothing special required here:

[0-9]1{3}

After the phone exchange number, you must match a space, a dash, or a dot (this
time you don't have to worry about matching no space because there must be at least a
space between the phone exchange number and the rest of the number):

C1-1\)

Then to finish things off, you must match the four-digit local phone extension at the
end of the string:

[0-9]1{4}$

Putting the entire pattern together results in this:

N(?[2-9100-91{2}\)7(| |-I\.)[0-91{3}(|-|\.)[0-9]1{4}$

You can use this regular expression pattern in the gawk program to filter out bad
phone numbers. All you need to do now is create a simple script using the regular
expression in a gawk program, and then filter your phone list through the script.
Remember that when you use regular expression intervals in the gawk program, you

507

The Linux Command Line & Shell Scripting Bible 2™ Edition

must use the --re-interval command line option or you won't get the correct
results.

Here's the script:

$ cat isphone

#!/bin/bash

script to filter out bad phone numbers

gawk --re-interval ‘/"\(?[2-91[0-91{2}\)?(] [-|\.)
[0-91{3}([-]|\.)[0-91{4}/{print $0}’
$

While you can't tell from this listing, the gawk command is on a single line in the shell
script. You can then redirect phone numbers to the script for processing:

$ echo “317-555-1234" | ./isphone
317-555-1234

$ echo “000-555-1234" | ./isphone
$

Or you can redirect an entire file of phone numbers to filter out the invalid ones:
$ cat phonelist

000-000-0000

123-456-7890

212-555-1234

(317)555-1234

(202) 555-9876

33523

1234567890

234.123.4567

$ cat phonelist | ./isphone

212-555-1234

(317)555-1234

(202) 555-9876

234.123.4567

$

Only the valid phone numbers that match the regular expression pattern appear.

Parsing an E-mail Address

In this day and age, e-mail addresses have become a crucial form of communication.
Trying to validate e-mail addresses has become quite a challenge for script builders
because there are a myriad of ways to create an e-mail address. The basic form of an e-
mail address is:

username@hostname

The username value can use any alphanumeric character, along with several special
characters:

* Dot
* Dash

508

The Linux Command Line & Shell Scripting Bible 2™ Edition

* Plus sign

« Underscore

These characters can appear in any combination in a valid e-mail userid.
The hostname portion of the e-mail address consists of one or more domain names and

a server name. The server and domain names must also follow strict naming rules,
allowing only alphanumeric characters, along with the special characters:

* Dot

» Underscore

The server and domain names are each separated by a dot, with the server name
specified first, any subdomain names specified next, and finally, the top-level domain
name without a trailing dot.

At one time there were a fairly limited number of top-level domains, and regular
expression pattern builders attempted to add them all in patterns for validation.
Unfortunately, as the Internet grew so did the possible top-level domains. This technique
is no longer a viable solution.

Let's start building the regular expression pattern from the left side. We know that
there can be multiple valid characters in the username. This should be fairly easy:

“([a-zA-Z0-9 \-\.\+]+)@

This grouping specifies the allowable characters in the username, and the plus sign to
indicate that there must be at least one character present. The next character is
obviously going to be the @ symbol, no surprises there.

The hostname pattern uses the same technique to match the server name and the
subdomain names:

([a-zA-Z0-9 \-\.1+)

This pattern matches the text:

server

server.subdomain

server.subdomain.subdomain

There are special rules for the top-level domain. Top-level domains are only alphabetic
characters, and they must be no fewer than two characters (used in country codes) and
no more than five characters in length. The following is the regular expression pattern
for the top-level domain:

\.([a-zA-Z]{2,5})%

Putting the entire pattern together results in the following:

“([a-2zA-Z0-9 \-\.\+]+)@([a-zA-Z0-9 \-\.]1+)\.([a-zA-Z]1{2,5})$

This pattern will filter out poorly formatted e-mail addresses from a data list. Now you
can create your script to implement the regular expression:

$ echo “rich@here.now” | ./isemail
rich@here.now

$ echo “rich@here.now.” | ./isemail
$

$ echo “richghere.n” | ./isemail

$

509

The Linux Command Line & Shell Scripting Bible 2™ Edition

$ echo “rich@here-now” | ./isemail
$
$ echo “rich.blum@here.now” | ./isemail
rich.blum@here.now
$ echo “rich blum@here.now” | ./isemail
rich blum@here.now
$ echo “rich/blum@here.now” | ./isemail
$
$ echo “rich#blum@here.now” | ./isemail
$
$ echo “rich*blum@here.now” | ./isemail
$

Summary

If you manipulate data files in shell scripts, you'll need to become familiar with regular
expressions. Regular expressions are implemented in Linux utilities, programming
languages, and applications using regular expression engines. A host of different regular
expression engines are available in the Linux world. The two most popular are the POSIX
Basic Regular Expression (BRE) engine and the POSIX Extended Regular Expression
(ERE) engine. The sed editor conforms mainly to the BRE engine, while the gawk
program utilizes most features found in the ERE engine.

A regular expression defines a pattern template that's used to filter text in a data
stream. The pattern consists of a combination of standard text characters and special
characters. The special characters are used by the regular expression engine to match a
series of one or more characters, similarly to how wildcard characters work in other
applications.

By combining characters and special characters, you can define a pattern to match
most any type of data. You can then use the sed editor or gawk program to filter specific
data from a larger data stream, or for validating data received from data entry
applications.

The next chapter digs deeper into using the sed editor to perform advanced text
manipulation. Lots of advanced features are available in the sed editor that make it
useful for handling large data streams and filtering out just what you need.

510

	3_cas_ulaz
	3_cas_sed
	3_cas_regex

