
47 Chapter 3: Managing Software

THE DEBIAN PACKAGE MANAGEMENT SYSTEM
The Debian Package Management System (DPMS) is the foundation for managing soft-
ware on Debian and Debian-like systems. As is expected of any software management
system, DPMS provides for easy installation and removal of software packages. Debian
packages end with the .deb extension.

At the core of the DPMS is the dpkg (Debian Package) application. dpkg works in
the back-end of the system, and several other command-line tools and graphical user
interface (GUI) tools have been written to interact with it. Packages in Debian are fondly
called “.deb” files. dpkg can directly manipulate .deb files. Various other wrapper tools
have been developed to interact with dpkg, either directly or indirectly.

APT
APT is a highly regarded and sophisticated toolset. It is an example of a wrapper tool
that interacts directly with dpkg. APT is actually a library of programming functions that
are used by other middle-ground tools, like apt-get and apt-cache, to manipulate
software on Debian-like systems. Several user-land applications have been developed
that rely on APT. (User-land refers to non-kernel programs and tools.) Examples of such
applications are synaptic, aptitude, and dselect. The user-land tools are generally more
user-friendly than their command-line counterparts. APT has also been successfully
ported to other operating systems.

One fine difference between APT and dpkg is that APT does not directly deal with
.deb packages; instead, it manages software via the locations (repositories) specified in a
configuration file. This file is the sources.list file. APT utilities use the sources.list file to
locate archives (or repositories) of the package distribution system in use on the system.

It should be noted that any of the components of the DPMS (dpkg, apt, or the GUI
tools) can be used to directly manage software on Debian-like systems. The tool of choice
depends on the user’s level of comfort and familiarity with the tool in question.

Figure 3-1 shows what can be described as the DPMS triangle. The tool at the apex
of the triangle (dpkg) is the most difficult to use and the most powerful, followed by the
next easiest to use (APT), and then followed finally by the user-friendly user-land tools.

Figure 3-1. DPMS triangle

dpkg

APT (apt-get, etc.)

synaptic, aptitude, adept, dselect, etc.

 58 Linux Administration: A Beginner’s Guide

This will return a long list of matches. You can then look through the list and pick the
package you want.

NOTE By default, Yum tries to access repositories that are located somewhere on the Internet.
Therefore, your system needs to be able to access the Internet to use Yum in its default state. You can
also create your own local software repository on the local file system or on your local area network
(LAN) and Yumify it. Simply copy the entire contents of the distribution media (DVD/CD) somewhere
and run the yum-arch command against the directory location.

SOFTWARE MANAGEMENT IN UBUNTU
As we mentioned earlier, software management in the Debian-like distros such as Ubuntu
is done using DPMS and all the attendant applications built around it, such as APT and
dpkg. In this section we will look at how to perform basic software management tasks
on Debian-like distros.

Querying for Information
On your Ubuntu server, the equivalent command to list all currently installed
software is

yyang@ubuntu-server:~$ dpkg -l

The command to get basic information about an installed package is

yyang@ubuntu-server:~$ dpkg -l bash

The command to get more detailed information about the bash package is

yyang@ubuntu-server:~$ dpkg --print-avail bash

To view the list of files that comes with the bash package, type

yyang@ubuntu-server:~$ dpkg-query -L bash

The querying capabilities of dpkg are extensive. You can use DPMS to query for spe-
cific information about a package. For example, to find out the size of the installed bash
package, you can type

yyang@ubuntu-server:~$ dpkg-query -W --showformat='${Package} ${Installed-Size}

\n' bash

59 Chapter 3: Managing Software

Installing Software in Ubuntu
There are several ways to get software installed on Ubuntu systems. You can use dpkg
to directly install a .deb (pronounced dot deb) file, or you may choose to use apt-get
to install any software available in the Ubuntu repositories on the Internet or locally
(CD/DVD ROM, file system, etc).

NOTE Installing software and uninstalling software on a system is considered an administrative or
privileged function. This is why you will notice that any commands that require superuser privileges
are preceded with the sudo command. The sudo command can be used to execute commands in
the context of a privileged user (or another user). On the other hand, querying the software database
is not considered a privileged function. To use dpkg to install a .deb package named lynx_2.8.6-
2ubuntu2_i386.deb , type

yyang@ubuntu-serverA:~$ sudo dpkg --install lynx_2.8.6-2ubuntu2_i386.deb

Using apt-get to install software is a little easier, because APT will usually take care
of any dependency issues for you. The only caveat is that the repositories configured in
the sources.list file (/etc/apt/sources.list) have to be reachable either over the Internet
or locally. The other advantage to using APT to install software is that you only need to
know a part of the name of the software; you don’t need to know the exact version num-
ber. You also don’t need to manually download the software before installing.

To use apt-get to install a package called lynx, type

yyang@ubuntu-server:~$ sudo apt-get install lynx

Removing Software in Ubuntu
Uninstalling software in Ubuntu using dpkg is as easy as typing

yyang@ubuntu-server:~$ sudo dpkg --remove lynx

You can also use apt-get to remove software by using the remove option. To
remove the lynx package using apt-get, type

yyang@ubuntu-server:~$ sudo apt-get remove lynx

A less commonly used method for uninstalling software with APT is by using the
install switch, but appending a minus sign to the package name to be removed. This
may be useful when you want to install and remove a package in one shot. To remove
the Lynx package using this method, type

yyang@ubuntu-server:~$ sudo apt-get install lynx-

APT makes it easy to completely remove software and any attendant configuration
file(s) from a system. This allows you to truly start from scratch by getting rid of any

 60 Linux Administration: A Beginner’s Guide

customized configuration files. Assuming we completely want to remove the lynx appli-
cation from the system, we would type

yyang@ubuntu-server:~$ sudo apt-get --purge remove lynx

GUI RPM Package Managers
For those who like a good GUI tool to help simplify their lives, several package manag-
ers with GUI front-ends are available. Doing all the dirty work behind these pretty GUI
front-ends is RPM. The GUI tools allow you to do quite a few things without forcing
you to remember command-line parameters. Some of the more popular ones with each
distribution or desktop environment are listed in the sections that follow.

Fedora
You can launch the GUI package management tool (see Figure 3-2) in Fedora by select-
ing System menu | Administration | Add/Remove Software. You can also launch the
Fedora package manager from the command line, simply by typing

[root@fedora-serverA ~]# gpk-application

Figure 3-2. Fedora GUI package manager

 74 Linux Administration: A Beginner’s Guide

UNIX/Linux was designed from the ground up to be a multiuser operating
system. A multiuser operating system will not be much good without users. And
this brings us to the topic of managing users in Linux. Associated with each

user is the user’s baggage. This baggage might include files, processes, resources, and
other information. When dealing with a multiuser system, it is necessary for a system
administrator to have a good understanding of what constitutes a user (and all that
user’s baggage), a group, and how they interact together.

User accounts are used on computer systems to determine who has access to what.
The ability of a user to access a system is determined by whether that user exists and has
the proper permissions to use the system.

In this chapter, we will examine the technique of managing users on a single host.
We’ll begin by exploring the actual database files that contain information about users.
From there, we’ll examine the system tools available to manage the files automatically.

WHAT EXACTLY CONSTITUTES A USER?
Under Linux, every file and program must be owned by a user. Each user has a unique
identifier called a user ID (UID). Each user must also belong to at least one group, a col-
lection of users established by the system administrator. Users may belong to multiple
groups. Like users, groups also have unique identifiers, called group IDs (GIDs).

The accessibility of a file or program is based on its UIDs and GIDs. A running pro-
gram inherits the rights and permissions of the user who invokes it. (SetUID and SetGID,
discussed in “Understanding SetUID and SetGID Programs” later in this chapter, create
an exception to this rule.) Each user’s rights can be defined in one of two ways: as those
of a normal user or the root user. Normal users can access only what they own or have
been given permission to run; permission is granted because the user either belongs to
the file’s group or because the file is accessible to all users. The root user is allowed to
access all files and programs in the system, whether or not root owns them. The root user
is often called a superuser.

If you are accustomed to Windows, you can draw parallels between that system’s
user management and Linux’s user management. Linux UIDs are comparable to Win-
dows SIDs (system IDs), for example. In contrast to Microsoft Windows, you may find
the Linux security model maddeningly simplistic: Either you’re root or you’re not. Nor-
mal users cannot have root privileges in the same way normal users can be granted
administrator access under Windows. Although this approach is a little less common,
you can also implement finer-grained access control through the use of access control
lists (ACLs) in Linux, as you can with Windows. Which system is better? Depends on
what you want and whom you ask.

Where User Information Is Kept
If you’re already used to Windows 200x user management, you’re familiar with the
Active Directory tool that takes care of the nitty-gritty details of the user database. This
tool is convenient, but it makes developing your own administrative tools trickier, since

75 Chapter 4: Managing Users

the only other way to read or manipulate user information is through a series of Light-
weight Directory Access Protocol (LDAP), Kerberos, or programmatic system calls.

In contrast, Linux takes the path of traditional UNIX and keeps all user information
in straight text files. This is beneficial for the simple reason that it allows you to make
changes to user information without the need of any other tool but a text editor such as
vi. In many instances, larger sites take advantage of these text files by developing their
own user administration tools so that they can not only create new accounts, but also
automatically make additions to the corporate phone book, web pages, and so on.

However, users and groups working with UNIX style for the first time may prefer
to stick with the basic user management tools that come with the Linux distribution.
We’ll discuss those tools in “User Management Tools” later in this chapter. For now, let’s
examine the text files that store user and group information in Linux.

The /etc/passwd File
The /etc/passwd file stores the user’s login, encrypted password entry, UID, default GID,
name (sometimes called GECOS), home directory, and login shell. Each line in the file
represents information about a user. The lines are made up of various standard fields,
with each field delimited by a colon. A sample entry from a passwd file with its various
fields is illustrated in Figure 4-1.

The fields of the /etc/passwd file are discussed in detail in the sections that follow.

Username Field
This field is also referred to as the login field or the account field. It stores the name of
the user on the system. The username must be a unique string and uniquely identifies a
user to the system. Different sites use different methods for generating user login names.
A common method is to use the first letter of the user’s first name and append the user’s
last name. This usually works, because the chances are relatively slim that one would
have users with the same first and last names. There are, of course, several variations of
this method. For example, for a user whose first name is “Ying” and whose last name is
“Yang”—a username of “yyang” can be assigned to that user.

Figure 4-1. Fields of the /etc/passwd file

Username

Password Group-ID Directory

User-ID

yyang : * : 500 : 500 : Ying Yang :/home/yyang: /bin/bash

GECOS Shell

 76 Linux Administration: A Beginner’s Guide

Password Field
This field contains the encrypted password for the user. On most modern Linux systems,
this field contains a letter x to indicate that shadow passwords are being used on the sys-
tem (discussed in detail later). Every user account on the system should have a password
or, at the very least, be tagged as impossible to log in. This is crucial to the security of the
system—weak passwords make compromising a system just that much simpler.

The original philosophy behind passwords is actually quite interesting, especially
since we still rely on a significant part of it today. The idea is simple: Instead of relying
on protected files to keep passwords a secret, the system would encrypt the password
using an AT&T-developed (and National Security Agency–approved) algorithm called
Data Encryption Standard (DES) and leave the encrypted value publicly viewable. What
originally made this secure was that the encryption algorithm was computationally dif-
ficult to break. The best most folks could do was a brute-force dictionary attack, where
automated systems would iterate through a large dictionary and rely on the nature of
users to pick English words for their passwords. Many people tried to break DES itself,
but since it was an open algorithm that anyone could study, it was made much more bul-
letproof before it was actually deployed.

When users entered their passwords at a login prompt, the password they entered
would be encrypted. The encrypted value would then be compared against the user’s
password entry. If the two encrypted values matched, the user was allowed to enter the
system. The actual algorithm for performing the encryption was computationally cheap
enough that a single encryption wouldn’t take too long. However, the tens of thousands of
encryptions that would be needed for a dictionary attack would take prohibitively long.

But then a problem occurred: Moore’s Law on processor speed doubling every
18 months held true, and home computers were becoming powerful and fast enough
that programs were able to perform a brute-force dictionary attack within days rather
than weeks or months. Dictionaries got bigger, and the software got smarter. The nature
of passwords thus needed to be reevaluated. One solution has been to improve the algo-
rithm used to perform the encryption of passwords. Some distributions of Linux have fol-
lowed the path of the FreeBSD operating system and used the Message-Digest algorithm
5 (MD5) scheme. This has increased the complexity involved in cracking passwords,
which, when used in conjunction with shadow passwords (discussed later on), works
quite well. (Of course, this is assuming you make your users choose good passwords!)

TIP Choosing good passwords is always a chore. Your users will inevitably ask, “What then, O Almighty
System Administrator, makes a good password?” Here’s your answer: a non-language word (not English,
not Spanish, not German, not a human-language word), preferably with mixed case, numbers, and
punctuation—in other words, a string that looks like line noise. Well, this is all nice and wonderful, but if
a password is too hard to remember, most people will quickly defeat its purpose by writing it down and
keeping it in an easily viewed place. So better make it memorable! A good technique might be to choose
a phrase and then pick the first letter of every word in the phrase. Thus, the phrase “coffee is VERY GOOD
for you and me” becomes ciVG4yam. The phrase is memorable, even if the resulting password isn’t.

77 Chapter 4: Managing Users

User-ID Field (UID)
This field stores a unique number that the operating system and other applications use
to identify the user and determine access privileges. It is the numerical equivalent of the
Username field. The UID must be unique for every user, with the exception of the UID
0 (zero). Any user who has a UID of 0 has root (administrative) access and thus has the
full run of the system. Usually, the only user who has this specific UID has the login root.
It is considered bad practice to allow any other users or usernames to have a UID of 0.
This is notably different from the Windows NT and 2000 models, in which any number
of users can have administrative privileges.

Different Linux distributions sometimes adopt different UID numbering schemes.
For example, Fedora and Red Hat Enterprise Linux (RHEL) reserve the UID 99 for
the user “nobody,” while SuSE and Ubuntu Linux use the UID 65534 for the user
“nobody.”

Group-ID Field (GID)
The next field in the /etc/passwd file is the group-ID entry. It is the numerical equivalent
of the primary group that the user belongs to. This field also plays an important role
in determining user access privileges. It should be noted that besides a user’s primary
group, a user can belong to other groups as well (more on this in the section “The /etc/
group File”).

GECOS
This field can store various pieces of information for a user. It can act as a placeholder for
the user description, full name (first name and last name), telephone number, and so on.
This field is optional and as result can be left blank. It is also possible to store multiple
entries in this field by simply separating the different entries with a comma.

NOTE GECOS is an acronym for General Electric Comprehensive Operating System (now referred
to as GCOS) and is a carryover from the early days of computing.

Directory
This is usually the user’s home directory, but it can also be any arbitrary location on the
system. Every user who actually logs into the system needs a place for configuration files
that are unique to the user. This place, called a home directory, allows each user to work
in a customized environment without having to change the environment customized
by another user—even if both users are logged into the system at the same time. In this
directory, users are allowed to keep not only their configuration files, but their regular
work files as well.

 78 Linux Administration: A Beginner’s Guide

For the sake of consistency, most sites place home directories at /home and name
each user’s directory by that user’s login name. Thus, for example, if your login name
were “yyang,” your home directory would be /home/yyang. The exception to this is for
some special system accounts, such as a root user’s account or a system service. The

Startup Scripts
Startup scripts are not quite a part of the information stored in the users’ database in
Linux. But they nonetheless play an important role in determining and controlling
a user’s environment. In particular, the startup scripts in Linux are usually stored
under the user’s home directory… and hence the need to mention them while still
on the subject of the directory (home directory) field in the /etc/passwd file.

Linux/UNIX was built from the get-go as a multiuser environment. Each user
is allowed to have his or her own configuration files; thus, the system appears to be
customized for each particular user (even if other people are logged in at the same
time). The customization of each individual user environment is done through the
use of shell scripts, run control files, and the like. These files can contain a series of
commands to be executed by the shell that starts when a user logs in. In the case
of the bash shell, for example, one of its startup files is the .bashrc file. (Yes, there
is a period in front of the filename—filenames preceded by periods, also called dot
files, are hidden from normal directory listings.) You can think of shell scripts in the
same light as batch files, except shell scripts can be much more capable. The .bashrc
script in particular is similar in nature to autoexec.bat in the Windows world.

Various Linux software packages use application-specific and customizable
options in directories or files that begin with a dot (.) in each user’s home directory.
Some examples are .mozilla and .kde. Here are some common dot (.) files that are
present in each user’s home directory:

▼ .bashrc/.profile Configuration files for BASH.

■ .tcshrc/.login Configuration files for tcsh.

■ .xinitrc This script overrides the default script that gets called when you
log into the X Window System.

▲ .Xdefaults This file contains defaults that you can specify for X Window
System applications.

When you create a user’s account, a set of default dot files are also created for
the user; this is mostly for convenience, to help get the user started. The user cre-
ation tools discussed later on help you do this automatically. The default files are
stored under the /etc/skel directory.

79 Chapter 4: Managing Users

superuser’s (root’s) home directory in Linux is usually set to /root (but for most variants
of UNIX, such as Solaris, the home directory is traditionally /). An example of a special
system service that might need a specific working directory could be a web server whose
web pages are served from the /var/www/ directory.

In Linux, the decision to place home directories under /home is strictly arbitrary, but
it does make organizational sense. The system really doesn’t care where we place home
directories, so long as the location for each user is specified in the password file.

Shell
When users log into the system, they expect an environment that can help them be pro-
ductive. This first program that users encounter is called a shell. If you’re used to the
Windows side of the world, you might equate this with command.com, Program Man-
ager, or Windows Explorer (not to be confused with Internet Explorer, which is a web
browser).

Under UNIX/Linux, most shells are text-based. A popular default user shell in Linux
is the Bourne Again Shell, or BASH for short. Linux comes with several shells from which
to choose—you can see most of them listed in the /etc/shells file. Deciding which shell is
right for you is kind of like choosing a favorite beer—what’s right for you isn’t right for
everyone, but still, everyone tends to get defensive about their choice!

What makes Linux so interesting is that you do not have to stick with the list of shells
provided in /etc/shells. In the strictest of definitions, the password entry for each user
doesn’t list what shell to run so much as it lists what program to run first for the user. Of
course, most users prefer that the first program run be a shell, such as BASH.

The /etc/shadow File
This is the encrypted password file. It stores the encrypted password information
for user accounts. In addition to the encrypted password, the /etc/shadow file stores
optional password aging or expiration information. The introduction of the shadow file
came about because of the need to separate encrypted passwords from the /etc/passwd
file. This was necessary because the ease with which the encrypted passwords could be
cracked was growing with the increase in the processing power of commodity comput-
ers (home PCs). The idea was to keep the /etc/passwd file readable by all users without
storing the encrypted passwords in it and then make the /etc/shadow file only readable
by root or other privileged programs that require access to that information. An example
of such a program would be the login program.

One might wonder, “Why not just make the regular /etc/passwd file readable by root
only or other privileged programs?” Well, it isn’t that simple. By having the password
file open for so many years, the rest of the system software that grew up around it relied
on the fact that the password file was always readable by all users. Changing this would
simply cause software to fail.

 80 Linux Administration: A Beginner’s Guide

Just as in the /etc/passwd file, each line in the /etc/shadow file represents information
about a user. The lines are made up of various standard fields, with each field delimited
by a colon. The fields are

▼ Login name

■ Encrypted password

■ Days since January 1, 1970, that password was last changed

■ Days before password may be changed

■ Days after which password must be changed

■ Days before password is to expire that user is warned

■ Days after password expires that account is disabled

■ Days since January 1, 1970, that account is disabled

▲ A reserved field

A sample entry from the /etc/shadow file is shown here for the user account mmel:

mmel:1HEWdPIJ.$qX/RbB.TPGcyerAVDlF4g.:12830:0:99999:7:::

The /etc/group File
The /etc/group file contains a list of groups, with one group per line. Each group entry
in the file has four standard fields, with each field colon-delimited, as in the /etc/passwd
and /etc/shadow files. Each user on the system belongs to at least one group, that being
the user’s default group. Users may then be assigned to additional groups if needed. You
will recall that the /etc/passwd file contains each user’s default group ID (GID). This GID
is mapped to the group’s name and other members of the group in the /etc/group file.
The GID should be unique for each group.

Also, like the /etc/passwd file, the group file must be world-readable so that appli-
cations can test for associations between users and groups. The fields of each line in
the /etc/group file are

▼ Group name The name of the group

■ Group password This is optional, but if set, it allows users who are not part of
the group to join

■ Group ID (GID) The numerical equivalent of the group name

▲ Group members A comma-separated list

A sample group entry in the /etc/group file is shown here:

bin:x:1:root,bin,daemon

This entry is for the “bin” group. The GID for the group is 1, and its members are root,
bin, and daemon.

81 Chapter 4: Managing Users

USER MANAGEMENT TOOLS
The wonderful part about having password database files that have a well-defined for-
mat in straight text is that it is easy for anyone to write their own management tools.
Indeed, many site administrators have already done this in order to integrate their tools
along with the rest of their organization’s infrastructure. They can start a new user from
the same form that lets them update the corporate phone and e-mail directory, LDAP
servers, web pages, and so on. Of course, not everyone wants to write their own tools,
which is why Linux comes with several existing tools that do the job for you.

In this section, we discuss user management tools that can be used from the
 command-line interface, as well as graphical user interface (GUI) tools. Of course,
learning how to use both is the preferred route, since they both have their advantages
and place.

Command-Line User Management
You can choose from among six command-line tools to perform the same actions per-
formed by the GUI tool: useradd, userdel, usermod, groupadd, groupdel, and
groupmod. The compelling advantage of using command-line tools for user manage-
ment, besides speed, is the fact that the tools can usually be incorporated into other
automated functions (such as scripts).

NOTE Linux distributions other than Fedora and RHEL may have slightly different parameters from
the tools used here. To see how your particular installation is different, read the man page for the
particular program in question.

useradd
As the name implies, useradd allows you to add a single user to the system. Unlike the
GUI tools, this tool has no interactive prompts. Instead, all parameters must be specified
on the command line.

Here’s how you use this tool:

usage: useradd [-u uid [-o]] [-g group] [-G group,...]

 [-d home] [-s shell] [-c comment] [-m [-k template]]

 [-f inactive] [-e expire] [-p passwd] [-M] [-n] [-r] name

 useradd -D [-g group] [-b base] [-s shell]

 [-f inactive] [-e expire]

Take note that anything in the square brackets in this usage summary is optional.
Also, don’t be intimidated by this long list of options! They are all quite easy to use and
are described in Table 4-1.

 82 Linux Administration: A Beginner’s Guide

Table 4-1. Options for the useradd Command

Option Description

-c comment Allows you to set the user’s name in the GECOS field.
As with any command-line parameter, if the value
includes a space, you will need to put quotes around
the text. For example, to set the user’s name to Ying
Yang, you would have to specify -c "Ying Yang".

-d homedir By default, the user’s home directory is /home/
user_name. When creating a new user, the user’s
home directory gets created along with the user
account. So if you want to change the default to
another place, you can specify the new location with
this parameter.

-e expire-date It is possible for an account to expire after a certain
date. By default, accounts never expire. To specify a
date, be sure to place it in YYYY MM DD format. For
example, use -e 2009 10 28 for the account to
expire on October 28, 2009.

-f inactive-time This option specifies the number of days after a
password expires that the account is still usable.
A value of 0 (zero) indicates that the account is
disabled immediately. A value of -1 will never allow
the account to be disabled, even if the password has
expired (for example, -f 3 will allow an account to
exist for three days after a password has expired).
The default value is -1.

-g initial-group Using this option, you can specify the default group
the user has in the password file. You can use a
number or name of the group; however, if you use
a name of a group, the group must exist in the /etc/
group file.

-G group [,...] This option allows you to specify additional groups
to which the new user will belong. If you use the
-G option, you must specify at least one additional
group. You can, however, specify additional groups
by separating the elements of the list with commas.
For example, to add a user to the project and admin
groups, you should specify -G project,admin.

83 Chapter 4: Managing Users

Table 4-1. Options for the useradd Command (cont.)

Option Description

-m [-k skel-dir] By default, the system automatically creates the
user’s home directory. This option is the explicit
command to create the user’s home directory.
Part of creating the directory is copying default
configuration files into it. These files come from the
/etc/skel directory by default. You can change this
by using the secondary option -k skel-dir. (You
must specify -m in order to use -k.) For example, to
specify the /etc/adminskel directory, you would use
-m -k /etc/adminskel.

-M If you used the -m option, you cannot use -M, and
vice versa. This option tells the command not to
create the user’s home directory.

-n Red Hat Linux creates a new group with the same
name as the new user’s login as part of the process
of adding a user. You can disable this behavior by
using this option.

-s shell A user’s login shell is the first program that runs
when a user logs into a system. This is usually a
command-line environment, unless you are logging
in from the X Window System login screen. By
default, this is the Bourne Again Shell (/bin/bash),
though some folks like other shells, such as the
Turbo C Shell (/bin/tcsh).

-u uid By default, the program will automatically find the
next available UID and use it. If, for some reason,
you need to force a new user’s UID to be a particular
value, you can use this option. Remember that UIDs
must be unique for all users.

name Finally, the only parameter that isn’t optional! You
must specify the new user’s login name.

 84 Linux Administration: A Beginner’s Guide

usermod
The usermod command allows you to modify an existing user in the system. It works in
much the same way as useradd. Its usage is summarized here:

usage: usermod [-u uid [-o]] [-g group] [-G group,...]

 [-d home [-m]] [-s shell] [-c comment] [-l new_name]

 [-f inactive] [-e expire] [-p passwd] [-L|-U] name

Every option you specify when using this command results in that particular parameter
being modified for the user. All but one of the parameters listed here are identical to the
parameters documented for the useradd command. The one exception is -l.

The -l option allows you to change the user’s login name. This and the -u option are
the only options that require special care. Before changing the user’s login or UID, you
must make sure the user is not logged into the system or running any processes. Chang-
ing this information if the user is logged in or running processes will cause unpredictable
results.

userdel
The userdel command does the exact opposite of useradd—it removes existing
users. This straightforward command has only one optional parameter and one required
parameter:

usage: userdel [-r] username

groupadd
The group commands are similar to the user commands; however, instead of working
on individual users, they work on groups listed in the /etc/group file. Note that chang-
ing group information does not cause user information to be automatically changed. For
example, if you remove a group whose GID is 100 and a user’s default group is specified
as 100, the user’s default group would not be updated to reflect the fact that the group
no longer exists.

The groupadd command adds groups to the /etc/group file. The command-line
options for this program are as follows:

usage: groupadd [-g gid [-o]] [-r] [-f] group

Table 4-2 describes command options.

groupdel
Even more straightforward than userdel, the groupdel command removes existing
groups specified in the /etc/group file. The only usage information needed for this com-
mand is

usage: groupdel group

where group is the name of the group to remove.

85 Chapter 4: Managing Users

groupmod
The groupmod command allows you to modify the parameters of an existing group. The
options for this command are

usage: groupmod [-g gid [-o]] [-n name] group

where the -g option allows you to change the GID of the group, and the -n option
allows you to specify a new name of a group. In addition, of course, you need to specify
the name of the existing group as the last parameter.

GUI User Managers
The obvious advantage to using the GUI tool is ease of use. It is usually just a point-and-
click affair. Many of the Linux distributions come with their own GUI user managers.
Fedora comes with a utility called system-config-users, RHEL comes with a utility

Table 4-2. Options for the groupadd Command

Option Description

-g gid Specifies the GID for the new group as gid. This
value must be unique, unless the -o option is used.
By default, this value is automatically chosen by
finding the first available value greater than or
equal to 500.

-r By default, Fedora and RHEL search for the first
GID that is higher than 499. The -r options tell
groupadd that the group being added is a system
group and should have the first available GID
under 499.

-f This is the force flag. This will cause groupadd to
exit without an error when the group about to be
added already exists on the system. If that is the
case, the group won’t be altered (or added again).
It is a Fedora- and RHEL-specific option.

group This option is required. It specifies the name of the
group you want to add to be group.

 96 Linux Administration: A Beginner’s Guide

A GRAND TOUR
The best way to see many of the utilities discussed in this chapter interact with one
another is to show them at work. In this section, we take a step-by-step approach to cre-
ating, modifying, and removing users and groups. Some new commands that were not
mentioned but that are also useful and relevant in managing users on a system are also
introduced and used.

Creating Users with useradd
Add new user accounts and assign passwords with the useradd and passwd
commands.

 1. Create a new user whose full name is “Ying Yang,” with the login name (account
name) of yyang. Type

[root@fedora-serverA ~]# useradd -c "Ying Yang" yyang

This command will create a new user account called yyang. The user will be
created with the usual Fedora default attributes. The entry in the /etc/passwd
file will be

yyang:x:500:500:Ying Yang:/home/yyang:/bin/bash

From this entry, you can tell these things about the Fedora (and RHEL) default
new user values:

▼ The UID number is the same as the GID number.

■ The default shell for new users is the bash shell (/bin/bash).

▲ A home directory is automatically created for all new users (e.g., /home/
yyang).

 2. Use the passwd command to create a new password for the username
yyang. Set the password to be 19ang19, and repeat the same password when
prompted. Type

[root@fedora-serverA ~]# passwd yyang

Changing password for user yyang.

New UNIX password:

Retype new UNIX password:

passwd: all authentication tokens updated successfully.

 3. Create another user account called mmellow for the user, with a full name of
“Mel Mellow,” but this time, change the default Fedora behavior of creating a

97 Chapter 4: Managing Users

group with the same name as the username (i.e., this user will instead belong to
the general users group). Type

[root@fedora-serverA ~]# useradd -c "Mel Mellow" -n mmellow

 4. Use the id command to examine the properties of the user mmellow. Type

[root@fedora-serverA ~]# id mmellow

 5. Again, use the passwd command to create a new password for the account
mmellow. Set the password to be 2owl78, and repeat the same password when
prompted. Type

[root@fedora-serverA ~]# passwd mmellow

 6. Create the final user account, called bogususer. But this time, specify the user’s
shell to be the tcsh shell, and let the user’s default primary group be the system
“games” group. Type

[root@fedora-serverA ~]# useradd -s /bin/tcsh -g games bogususer

 7. Examine the /etc/passwd file for the entry for the bogususer user. Type

[root@fedora-serverA ~]# grep bogususer /etc/passwd

bogususer:x:502:20::/home/bogususer:/bin/tcsh

From this entry, you can tell that:

▼ The UID is 502.

■ The GID is 20.

■ A home directory is also created for the user under the /home directory.

▲ The user’s shell is /bin/tcsh.

Creating Groups with groupadd
Next, create a couple of groups: nonsystem and system.

 1. Create a new group called research. Type

[root@fedora-serverA ~]# groupadd research

 2. Examine the entry for the research group in the /etc/group file. Type

[root@fedora-serverA ~]# grep research /etc/group

research:x:501:

This output shows that the group ID for the research group is 501.

 98 Linux Administration: A Beginner’s Guide

 3. Create another group called sales. Type

[root@fedora-serverA ~]# groupadd sales

 4. Create the final group called bogus, and in addition, force this group to be a
system group (i.e., the GID will be lower than 499). Type

[root@fedora-serverA ~]# groupadd -r bogus

 5. Examine the entry for the bogus group in the /etc/group file. Type

[root@fedora-serverA ~]# grep bogus /etc/group

bogus:x:497:

The output shows that the group ID for the bogus group is 497.

Modifying User Attributes with usermod
Now try using usermod to change the user and group IDs for a couple of accounts.

 1. Use the usermod command to change the user ID (UID) of the bogususer to
600. Type

[root@fedora-serverA ~]# usermod -u 600 bogususer

 2. Use the id command to view your changes. Type

[root@fedora-serverA ~]# id bogususer

The output shows the new UID (600) for the user.

 3. Use the usermod command to change the primary group ID (GID) of the bogus-
user account to that of the bogus group (GID = 101) and to also set an expiry date
of 12-12-2010 for the account. Type

[root@fedora-serverA ~]# usermod -g 497 -e 2010-12-12 bogususer

 4. View your changes with the id command. Type

[root@fedora-serverA ~]# id bogususer

 5. Use the chage command to view the new account expiration information for
the user. Type

[root@fedora-serverA ~]# chage -l bogususer

Last password change : Sep 23, 2009

Password expires : never

Password inactive : never

99 Chapter 4: Managing Users

Account expires : Dec 12, 2010

Minimum number of days between password change : 0

Maximum number of days between password change : 99999

Number of days of warning before password expires : 7

Modifying Group Attributes with groupmod
Now try using the groupmod command.

 1. Use the groupmod command to rename the bogus group to bogusgroup. Type

[root@fedora-serverA ~]# groupmod -n bogusgroup bogus

 2. Again use the groupmod command to change the group ID (GID) of the bogus-
group to 600. Type

[root@fedora-serverA ~]# groupmod -g 600 bogusgroup

 3. View your changes to the bogusgroup in the /etc/group file. Type

[root@fedora-serverA ~]# grep bogusgroup /etc/group

Deleting Groups and Users with groupdel and userdel
Try using the groupdel and userdel commands to delete groups and users,
respectively.

 1. Use the groupdel command to delete the bogusgroup group. Type

[root@fedora-serverA ~]# groupdel bogusgroup

You will notice that the bogusgroup entry in the /etc/group file will be removed
accordingly.

 2. Use the userdel command to delete the user bogususer that you created previ-
ously. At the shell prompt, type

[root@fedora-serverA ~]# userdel -r bogususer

NOTE When you run the userdel command with only the user’s login specified on the command
line (for example, userdel bogususer), all of the entries in the /etc/passwd and /etc/shadow
files, as well as references in the /etc/group file, are automatically removed. But if you use the optional
-r parameter (for example, userdel -r bogususer), all of the files owned by the user in that
user’s home directory are removed as well.

 100 Linux Administration: A Beginner’s Guide

SUMMARY
This chapter documented the nature of users under Linux. Much of what you read here
also applies to other variants of UNIX, which makes administering users in heteroge-
neous environments much easier with the different *NIXs.

The main points covered in this chapter were:

▼ Each user gets a unique UID.

■ Each group gets a unique GID.

■ The /etc/passwd file maps UIDs to usernames.

■ Linux handles encrypted passwords in multiple ways.

■ Linux includes tools that help you administer users.

■ Should you decide to write your own tools to manage the user databases, you’ll
now understand the format for doing so.

▲ PAM, the Pluggable Authentication Modules, is Linux’s generic way of handling
multiple authentication mechanisms.

These changes are pretty significant for an administrator coming from the Windows
XP/Vista/NT/200x environment and can be a little tricky at first. Not to worry, though—
the Linux/UNIX security model is quite straightforward, so you should quickly get com-
fortable with how it all works.

If the idea of getting to build your own tools to administer users appeals to you,
definitely look into books on the Perl scripting language. It is remarkably well suited
for manipulating tabular data (such as the /etc/passwd file). Take some time and page
through a few Perl programming books at your local bookstore if this is something that
interests you.

297

Chapter 12: Managing Disks and Filesystems

12

Disabling swap area
If at any point you want to disable a swap area, you can do so using the swapoff
command. You might do this, in particular, if the swap area is no longer needed and you
want to reclaim the space being consumed by a swap fi le or remove a USB drive that is
 providing a swap partition.

First, make sure that no space is being used on the swap device (using the free com-

mand), then use swapoff to turn off the swap area so you can reuse the space. Here is an
example:

free -m
 total used free shared buffers cached
Mem: 3629 2433 1195 0 99 580
-/+ buffers/cache: 1754 1874
Swap: 4095 0 4095
swapoff /dev/sdc2

Using the fstab fi le to defi ne mountable fi le systems
The hard disk partitions on your local computer and the remote fi lesystems you use
every day are probably set up to automatically mount when you boot Linux. The

/etc/fstab fi le contains defi nitions for each partition, along with options describing

how the partition is mounted. Here’s an example of an /etc/fstab fi le:

/etc/fstab
/dev/mapper/vg_abc-lv_root / ext4 defaults 1 1
UUID=78bdae46-9389-438d-bfee-06dd934fae28 /boot ext4 defaults 1 2
/dev/mapper/vg_abc-lv_home /home ext4 defaults 1 2
/dev/mapper/vg_abc-lv_swap swap swap defaults 0 0
Mount entries added later.
/dev/sdb1 /win vfat ro 1 2
192.168.0.27:/nfsstuff /remote nfs users,_netdev 0 0
//192.168.0.28/myshare /share cifs guest,_netdev 0 0
special Linux filesystems
tmpfs /dev/shm tmpfs defaults 0 0
devpts /dev/pts devpts gid=5,mode=620 0 0
sysfs /sys sysfs defaults 0 0
proc /proc proc defaults 0 0

The /etc/fstab fi le just shown is from a default Red Hat Enterprise Linux 6 server
install, with a few lines added.

For now, you can ignore the tmpfs, devpts, sysfs, and proc entries. Those are special
devices associated with shared memory, terminal windows, device information, and
kernel parameters, respectively.

In general, the fi rst column of /etc/fstab shows the device or share (what is mounted),
while the second column shows the mount point (where it is mounted). That is followed

c12.indd 297 8/27/2012 11:21:54 AM

298

Part III: Becoming a Linux System Administrator

by the type of fi lesystem, any mount options (or defaults), and two numbers (used to tell

commands such as dump and fsck what to do with the fi lesystem).

The fi rst three entries represent the disk partitions assigned to the root of the fi lesystem (/),

the /boot directory, and the /home directory. All three are ext4 fi lesystems. The fourth
line is a swap device (used to store data when RAM overfl ows). Notice that the device

names for /, /home, and swap all start with /dev/mapper. That's because they are LVM
logical volumes that are assigned space from a pool of space called an LVM group (more on
LVM in the "Using Logical Volume Management Partitions" section later in this chapter).

The /boot partition is on its own physical partition, /dev/sda1. Instead of using

/dev/sda1, however, a unique identifi er (UUID) identifi es the device. Why use a UUID

instead of /dev/sda1 to identify the device? Say that that you plugged another disk into
your computer and booted up. It probably won't happen, but it is possible that the new

disk might be identifi ed as /dev/sda, causing the system to look for the contents of

/boot on the fi rst partition of that disk.

To see all the UUIDs assigned to storage devices on your system, type the blkid
command, as follows:

blkid
/dev/sda1:
 UUID="78bdae46-9389-438d-bfee-06dd934fae28" TYPE="ext4"
/dev/sda2:
 UUID="wlvuIv-UiI2-pNND-f39j-oH0X-9too-AOII7R" TYPE="LVM2_member"
/dev/mapper/vg_abc-lv_root:
 UUID="3e6f49a6-8fec-45e1-90a9-38431284b689" TYPE="ext4"
/dev/mapper/vg_abc-lv_swap:
 UUID="77662950-2cc2-4bd9-a860-34669535619d" TYPE="swap"
/dev/mapper/vg_abc-lv_home:
 UUID="7ffbcff3-36b9-4cbb-871d-091efb179790" TYPE="ext4"
/dev/sdb1:
 SEC_TYPE="msdos" UUID="75E0-96AA" TYPE="vfat"

Any of the device names can be replaced by the UUID designation in the left column of

an /etc/fstab entry.

I added the next three entries in /etc/fstab to illustrate some different kinds of
entries. I connected a hard drive from an old Microsoft Windows system, and I had it

mounted on the /win directory. I added the ro option so it would mount read-only.

The next two entries represent remote fi lesystems. On the /remote directory, the

/nfsstuff directory is mounted read/write (rw) from the host at address

192.168.0.27 as an NFS share. On the /share directory, the Windows share named

myshare is mounted from the host at 192.168.0.28. In both cases, I added the

_netdev option, which tells Linux to wait for the network to come up before try-
ing to mount the shares. (For more information on mounting CIFS and NFS shares,
refer to Chapters 19, “Confi gure a Windows File Sharing (Samba) Server,” and 20,
“Confi guring an NFS File Server,” respectively.)

c12.indd 298 8/27/2012 11:21:54 AM

299

Chapter 12: Managing Disks and Filesystems

12

Coming from Windows
The “Using the fstab fi le to defi ne mountable fi le systems” section shows mounting a hard disk parti-
tion from an old VFAT fi lesystem being used in Windows. Most Windows systems today use the NTFS
fi lesystem. Support for this system, however, is not delivered with every Linux system. NTFS is available
from Fedora in the ntfs-3g package. Other NTFS support is available from the Linux-NTFS project
(http://www.linux-ntfs.org/).

To help you understand the contents of the /etc/fstab fi le, here is what is in each fi eld
of that fi le:

 ■ Field 1—The name of the device representing the fi lesystem. This fi eld can include

the LABEL or UUID option, with which you can indicate a volume label or uni-
versally unique identifi er (UUID) instead of a device name. The advantage to this
approach is that because the partition is identifi ed by volume name, you can move

a volume to a different device name and not have to change the fstab fi le. (See

the description of the mkfs command later in the "Using the mkfs Command to
Create a Filesystem" section of this chapter for information on creating and using
labels.)

 ■ Field 2—The mount point in the fi lesystem. The fi lesystem contains all data from
the mount point down the directory tree structure unless another fi lesystem is
mounted at some point beneath it.

 ■ Field 3—The fi lesystem type. Valid fi lesystem types are described in the
“Supported fi lesystems” section earlier in this chapter (although you can only
use fi lesystem types for which drivers are included for your kernel).

 ■ Field 4—Use defaults or a comma-separated list of options (no spaces) you

want to use when the entry is mounted. See the mount command manual page

(under the -o option) for information on other supported options.

Typically, only the root user is allowed to mount a fi lesystem using the mount command. However, to allow any user to
mount a fi lesystem (such as a fi lesystem on a CD), you could add the user option to Field 4 of /etc/fstab.

 ■ Field 5—The number in this fi eld indicates whether the fi lesystem needs to be

dumped (that is, have its data backed up). A 1 means that the fi lesystem needs

to be dumped, and a 0 means that it doesn’t. (This fi eld is no longer particularly
useful because most Linux administrators use more sophisticated backup options

than the dump command. Most often, a 0 is used.)

 ■ Field 6—The number in this fi eld indicates whether the indicated fi lesystem

should be checked with fsck when the time comes for it to be checked: 1 means

it needs to be checked fi rst, 2 means to check after all those indicated by 1 have

already been checked, and 0 means don’t check it.

c12.indd 299 8/27/2012 11:21:54 AM

300

Part III: Becoming a Linux System Administrator

If you want to fi nd out more about mount options as well as other features of the

/etc/fstab fi le, there are several man pages you can refer to, including man 5 nfs

and man 8 mount.

Using the mount command to mount fi le systems
Linux systems automatically run mount -a (mount all fi lesystems) each time you boot.

For that reason, you generally use the mount command only for special situations. In

particular, the average user or administrator uses mount in two ways:

 ■ To display the disks, partitions, and remote fi lesystems currently mounted

 ■ To temporarily mount a fi lesystem

Any user can type mount (with no options) to see what fi lesystems are currently mounted

on the local Linux system. The following is an example of the mount command. It shows

a single hard disk partition (/dev/sda1) containing the root (/) fi lesystem, and proc and

devpts fi lesystem types mounted on /proc and /dev, respectively.

$ mount
/dev/sda3 on / type ext4 (rw)
/dev/sda2 on /boot type ext4 (rw)
/dev/sda1 on /mnt/win type vfat (rw)
/dev/proc on /proc type proc (rw)
/dev/sys on /sys type sysfs (rw)
/dev/devpts on /dev/pts type devpts (rw,gid=5,mode=620)
/dev/shm on /dev/shm type tmpfs (rw)
none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw)
/dev/cdrom on /media/MyOwnDVD type iso9660 (ro,nosuid,nodev)

Traditionally, the most common devices to mount by hand are removable media, such as
DVDs or CDs. However, depending on the type of desktop you are using, CDs and DVDs
may be mounted for you automatically when you insert them. (In some cases, applications
are launched as well when media is inserted. For example, a CD music player or photo edi-
tor may be launched when your inserted medium has music or digital images on it.)

Occasionally, however, you may fi nd it useful to mount a fi lesystem manually. For exam-
ple, you want to look at the contents of an old hard disk, so you install it as a second
disk on your computer. If the partitions on the disk did not automount, you could mount
partitions from that disk manually. For example, to mount read-only a disk partition

sdb1 that has an older ext3 fi lesystem, you could type this:

mkdir /mnt/temp
mount -t ext3 -o ro /dev/sdb1 /mnt/tmp

Another reason to use the mount command is to remount a partition to change its mount

options. Say that you want to remount /dev/sdb1 as read/write, but you do not want to
unmount it (maybe someone is using it). You could use the remount option as follows:

mount -t ext3 -o remount,rw /dev/sdb1

c12.indd 300 8/27/2012 11:21:54 AM

301

Chapter 12: Managing Disks and Filesystems

12

Mounting a disk image in loopback
Another valuable way to use the mount command has to do with disk images. If you
download a CD or fl oppy disk image from the Internet and you want to see what it con-
tains, you can do so without burning it to CD or fl oppy. With the image on your hard

disk, create a mount point and use the -o loop option to mount it locally. Here’s an
example:

mkdir /mnt/mycdimage
mount -o loop whatever-i686-disc1.iso /mnt/mycdimage

In this example, the /mnt/mycdimage directory is created, and then the disk image fi le

(whatever-i686-disc1.iso) residing in the current directory is mounted on it. You

can now cd to that directory, view the contents of it, and copy or use any of its contents.
This is useful for downloaded CD images from which you want to install software with-
out having to burn the image to CD. You could also share that mount point over NFS,
so you could install the software from another computer. When you are done, just type

umount /mnt/mycdimage to unmount it.

Other options to mount are available only for specifi c fi lesystem types. See the mount
manual page for those and other useful options.

Using the umount command
When you are done using a temporary fi lesystem, or you want to unmount a permanent

fi lesystem temporarily, use the umount command. This command detaches the fi lesys-

tem from its mount point in your Linux fi lesystem. To use umount, you can give it either
a directory name or a device name. For example:

umount /mnt/test

This unmounts the device from the mount point /mnt/test. You can also unmount
using the form

umount /dev/sdb1

In general, it’s better to use the directory name (/mnt/test) because the umount
command will fail if the device is mounted in more than one location. (Device names all

begin with /dev.)

If you get the message device is busy, the umount request has failed because either
an application has a fi le open on the device or you have a shell open with a directory on
the device as a current directory. Stop the processes or change to a directory outside the

device you are trying to unmount for the umount request to succeed.

An alternative for unmounting a busy device is the -l option. With umount -l (a lazy
unmount), the unmount happens as soon as the device is no longer busy. To unmount
a remote NFS fi lesystem that’s no longer available (for example, the server went down),

you can use the umount -f option to forcibly unmount the NFS fi lesystem.

c12.indd 301 8/27/2012 11:21:55 AM

302

Part III: Becoming a Linux System Administrator

A really useful tool for discovering what’s holding open a device you want to unmount is the lsof command. Type lsof
with the name of the partition you want to unmount (such as lsof /mnt/test). The output shows you what com-
mands are holding fi les open on that partition. The fuser-v /mnt test command can be used in the same way.

Using the mkfs Command to Create a Filesystem
You can create a fi lesystem for any supported fi lesystem type on a disk or partition that

you choose. You do so with the mkfs command. Although this is most useful for creat-
ing fi lesystems on hard-disk partitions, you can create fi lesystems on USB fl ash drives,
fl oppy disks, or rewritable CDs as well.

Before you create a new fi lesystem, make sure of the following:

 ■ You have partitioned the disk as you want (using the fdisk command).

 ■ You get the device name correct, or you may end up overwriting your hard disk
by mistake. For example, the fi rst partition on the second SCSI or USB fl ash drive

on your system is /dev/sdb1 and the third disk is /dev/sdc1.

 ■ To unmount the partition if it’s mounted before creating the fi lesystem.

The following is an example of using mkfs to create a fi lesystem on the fi rst (and only)

partition on a 2GB USB fl ash drive located as the third SCSI disk (/dev/sdc1):

mkfs -t ext3 /dev/sdc1
mke2fs 1.40.8 (13-Mar-2008)
Warning: 256-byte inodes not usable on older systems
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
122160 inodes, 487699 blocks
24384 blocks (5.00%) reserved for the super user
First data block=0
Maximum filesystem blocks=503316480
15 block groups
32768 blocks per group, 32768 fragments per group
8144 inodes per group
Superblock backups stored on blocks:
 32768, 98304, 163840, 229376, 294912
Writing inode tables: done
Creating journal (8192 blocks): done
Writing superblocks and filesystem accounting information: done
This filesystem will be automatically checked every 39 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.

c12.indd 302 8/27/2012 11:21:55 AM

303

Chapter 12: Managing Disks and Filesystems

12

You can see the statistics that are output with the formatting done by the mkfs com-
mand. The number of inodes and blocks created are output, as are the number of blocks
per group and fragments per group. An inode, which hold metadata such as ownership
and timestamps for each fi le, will be consumed for every fi le and directory in the fi lesys-
tem. So the number of inodes shown here limits the total number of fi les you can create
in that fi lesystem.

You can now mount this fi lesystem (mkdir /mnt/myusb ; mount /dev/sdc1 /mnt
/myusb), change to /mnt/usb as your current directory (cd /mnt/myusb), and create
fi les on it as you please.

Summary
Managing fi lesystems is a critical part of administering a Linux system. Using com-

mands such as fdisk, you can view and change disk partitions. Filesystems can be

added to partitions using the mkfs command. Once created, fi lesystems can be mounted
and unmounted using the mount and umount commands, respectively.

Logical Volume Management (LVM) offers a more powerful and fl exible way of man-
aging disk partitions. With LVM, you create pools of storage, called volumes, that can
allow you to grow and shrink logical volumes, as well as extend the size of your volume
groups by adding more physical volumes.

With most of the basics needed to become a system administrator covered at this point
in the book, Chapter 13 introduces concepts for extending those skills to manage net-
work servers. Topics in that chapter include information on how to install, manage, and
secure servers.

Exercises
Use these exercises to test your knowledge of creating disk partitions, logical volume
 management, and working with fi lesystems. You will need a USB fl ash drive that is at
least 1GB that you can erase for these exercises.

These tasks assume you are running a Fedora or Red Hat Enterprise Linux system
(although some tasks will work on other Linux systems as well). If you are stuck, solu-
tions to the tasks are shown in Appendix B (although in Linux, there are often multiple
ways to complete a task).

 1. Run a command as root to watch the /var/log/messages fi le and insert your
USB fl ash drive. Determine the device name of the USB fl ash drive.

 2. Run a command to list the partition table for the USB fl ash drive.

c12.indd 303 8/27/2012 11:21:55 AM

304

Part III: Becoming a Linux System Administrator

 3. Delete all the partitions on your USB fl ash drive, save the changes, and make
sure that the changes were made both on the disk's partition table and in the
Linux kernel.

 4. Add three partitions to the USB fl ash drive: 100MB Linux partition, 200MB swap
partition, and 500MB LVM partition. Save the changes.

 5. Put an ext3 fi lesystem on the Linux partition.

 6. Create a mount point called /mnt/mypart and mount the Linux partition on it.

 7. Enable the swap partition and turn it on so that there is additional swap space
immediately available.

 8. Create a volume group called abc from the LVM partition, create a 200MB logical

volume from that group called data, add a VFAT partition, and then temporarily

mount the logical volume on a new directory named /mnt/test. Check that it
was successfully mounted.

 9. Grow the logical volume from 200MB to 300MB.

 10. Do what you need to do to safely remove the USB fl ash drive from the computer:
unmount the Linux partition, turn off the swap partition, unmount the logical
 volume, and delete the volume group from the USB fl ash drive.

c12.indd 304 8/27/2012 11:21:55 AM

	4_cas_software_install
	4_cas_users
	4_cas_disks

